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Abstract

In the �rst part of the thesis we initiate systematic study of EZ-structures (and as-

sociated boundaries) of groups acting on spaces that admit consistent and conical (equi-

valently, consistent and convex) geodesic bicombings. Such spaces recently drew a lot

of attention due to the fact that many classical groups act `nicely' on them. We rigor-

ously construct EZ-structures, discuss their uniqueness (up to homeomorphism), provide

examples, and prove some boundary-related features analogous to the ones exhibited by

CAT(0) spaces and groups, which form a subclass of the discussed class of spaces and

groups.

In the second part of the thesis we give complete characterizations (in terms of nerves)

of those word hyperbolic Coxeter groups whose boundary is homeomorphic to the Sierpi«-

ski curve and to the Menger curve, respectively. The justi�cation is mostly an appropriate

combination of various results from the literature.

Streszczenie

W pierwszej cz¦±ci rozprawy kªadziemy podwaliny pod ustrukturyzowane badania

nad EZ-strukturami � i powi¡zanymi z nimi brzegami � dla grup dziaªaj¡cych na przes-

trzeniach metrycznych maj¡cych zgodne, sto»kowe (równowa»nie: zgodne, wypukªe)

biuczesanie geodezyjne. Ostatnimi czasy takim przestrzeniom po±wi¦cono sporo uwagi

badawczej ze wzgl¦du na fakt, »e wiele klasycznie rozwa»anych rodzin grup dziaªa na nich

w sposób interesuj¡cy z geometrycznego punktu widzenia. Z dbaªo±ci¡ o szczegóªy

konstruujemy EZ-struktury, poruszamy te» temat ich jednoznaczno±ci (rozwa»anej

z dokªadno±ci¡ do homeomor�zmu) i przedstawiamy ich przykªady; nast¦pnie dowodzimy,

»e rozwa»ane w tej cz¦±ci rozprawy klasy przestrzeni i grup wykazuj¡ pewne zwi¡zane

z brzegami wªasno±ci analogiczne do tych przejawianych przez pewn¡ ich podklas¦ �

grupy i przestrzenie CAT(0).

W drugiej cz¦sci rozprawy wskazujemy� wyra»one poprzez warunki dotycz¡ce nerwów

� peªne charakteryzacje tych hiperbolicznych grup Coxetera, których brzeg jest homeo-

mor�czny z dywanem Sierpi«skiego, i tych, których brzeg jest homeomor�czny z krzyw¡

Mengera. Uzasadnienie jest w du»ej cz¦±ci kombinacj¡ ró»nych wyników wyst¦puj¡cych

w literaturze.
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Introduction to the thesis

This two-part thesis oscillates around the topic of boundaries at in�nity, treating the

subject from a geometric viewpoint.

Part A, titled `On boundaries of bicombable groups', is based on the preprint of the

same title by the author of this thesis, and focuses on developing the boundary-related

parts of the theory of spaces that admit geodesic bicombings.

Part B, titled `Complete characterisations of hyperbolic Coxeter groups with Sierpi«ski

curve boundary and with Menger curve boundary', is based on the paper of the same

title, joint with Michael Kapovich and Jacek �wi¡tkowski, which has just appeared as

an online-�rst article in Fundamenta Mathematicae [DK�24]. This part is dedicated to a

speci�c boundary-related problem � we state and prove the eponymous characterisations.

The individual contributions to this paper are as follows. The outline of the proof was

suggested by Michael Kapovich. The author of this thesis and Jacek �wi¡tkowski �lled

this outline with details. In particular, the author of this thesis found the proofs of two

key technical parts of the aforementioned outline: the observation from combinatorial

group theory in Subsection 1.5, and the claim in the proof of Proposition 1.9.

Acknowledgements. I would like to thank my advisors � Jan Dymara and Damian

Osajda � and Jacek �wi¡tkowski for various forms of support during the preparation of

this thesis.
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A On boundaries of bicombable spaces

This part of the thesis is based on the preprint sharing the title with this part written by

the author of this thesis. See the introduction to the thesis for more details.

0. Introduction

Non-positive curvature (NPC) plays a prominent role in the Geometric Group Theory,

and appears there in many forms. Two of the most important instances of NPC are

CAT(0) [BH99] and (Gromov/word) hyperbolic [Gro87] spaces and groups. Recently,

a lot of attention has been attracted by another form of non-positive curvature, in a

sense generalising these two concepts, and reaching far beyond the world of CAT(0) and

hyperbolic spaces and groups. Namely, we focus our attention on geodesic metric spaces

that admit so-called ccc geodesic bicombings. A geodesic bicombing σ on a space X is a

continuous functionX×X×[0, 1] → X which is a continuous choice of geodesics inX, and

a bicombing is a ccc bicombing if it satis�es properties called consistency and conicality

(or, equivalently, the ones called consistency and convexity) � see De�nition 1.1 and

Remark 1.2 for more details.

CAT(0) spaces are particular examples of ccc-bicombable spaces, and with every word

hyperbolic group there is a canonically associated ccc-bicombable space � namely the

so-called injective hull of the word hyperbolic group. Further important examples of ccc-

bicombable spaces come from the realm of injective metric spaces [Lan13; DL15] � see

Corollary II(i); and other important examples of groups acting `nicely' on ccc-bicombable

spaces include Helly groups [Cha+24]� see Corollary II(ii). In particular, the last class

of groups includes many classical families � FC-type Artin groups, some lattices in Eu-

clidean buildings, Garside groups, some small cancellation groups, as well as all CAT(0)

cubical groups, and all word hyperbolic groups. For some of these groups the structure

of a group acting geometrically on a ccc-bicombable space is the only known form of non-

positive curvature, and this allowed to exhibit many important features of such groups

and to answer a few open questions about them. The theory of Helly groups, groups
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acting geometrically on injective metric spaces, and, more generally, groups acting in a

controlled way on ccc-bicombable spaces is currently being intensively developed, bringing

many new achievements: [Lan13; DL15; DL16; Mie17; Bas18; Cha+20; HO21a; HO21b;

GMS22; Hae22b; Hae22a; Hae23a; Hae23b; HHP23; Hod23; Cha+24; OV24].

In the current article, we initiate a systematic study of boundaries of ccc-bicombable

spaces, in particular, such spaces acted upon geometrically by a group. More precisely,

for a group G acting geometrically on a ccc-bicombable space X we construct and study

its EZ-structures. Following [Bes96; FL05; Dra06; OP09], where Z-structures and their

equivariant version, EZ-structures, have been de�ned in ways slightly di�ering in some

details, an EZ-structure X is a G-equivariant compacti�cation of X where the boundary

∂X := X \X is a `small' subset of X � see De�nition 1.5 and the discussion below it.

The visual-boundary compacti�cation of a CAT(0) space admitting a geometric group

action, or the compacti�cation of a suitable Rips complex of a word hyperbolic group by

adding its Gromov boundary, are the two most important � and historically the �rst �

examples of EZ-structures. Already the existence of an EZ-structure has very important

consequences, e.g. it implies the Novikov Conjecture for the group in the torsion-free case.

Furthermore, the topology of the boundary re�ects some algebraic properties of the group

(see e.g. [Bow98; Swe99; PS09]) and various topological invariants of the boundary are

invariants of the group (see e.g. [BM91; Bes96; Dra06; GO07]). Besides CAT(0) and

word hyperbolic groups, (E)Z-structures have been constructed for various other families

of groups in e.g. [Dah03; OP09; Tir11; Mar14; Gui14; Pie18; GMT19; GMS22; EW23;

Cha+24]. For the existence of a Z-structure in the torsion-free case, it is required for a

group to be of type F , that is to admit a �nite classifying space. It is a well-known open

question whether all groups of type F possess (E)Z-structures [Bes96, Question in 3.1].

Recall that an action of a group G on a metric space X via isometries is geometric if it

is proper, that is the set {g ∈ G : gK ∩K ̸= ∅} is �nite for all compact sets K ⊆ X, and

cocompact, that is the quotient G\X is compact. Our �rst main result is that in the case

of groups acting geometrically on ccc-bicombable spaces an EZ-structure indeed exists.

Theorem I. Let G be a group acting geometrically on a �nite-dimensional proper geo-

desic metric space (X, d), which possesses a ccc, G-equivariant bicombing σ. Then G

admits an EZ-structure.

Although the existence of an EZ-structure � following [DL15], where the authors give

the construction of the compacti�cation and prove several of the Z-structure�properties

for it � was claimed in [Cha+24], there was no rigorous proof there. We present two

independent � and equivalent, see Corollary 3.7 � constructions of the EZ-structure:
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one using the construction via the Gelfand dual from [EW23], and one going along the

more standard approach, known from the CAT(0) and word hyperbolic cases, namely via

equivalence classes of in�nite rays (compatible with the lines) of the bicombing, initiated

in the aforementioned article [DL15] � see Subsections 3.1 and 2.1, respectively, for more

details. For a spaceX admitting a ccc bicombing σ, we denote below by ∂σX the boundary

resulting from the construction from [DL15], and put Xσ := X ∪ ∂σX.

Since [AP56], injective metric spaces have appeared and have been rediscovered in

many research areas of mathematics and computer science, and are known under many

di�erent names: in the contexts closest to ours � in topology and metric geometry � they

are known as hyperconvex spaces, or absolute retracts or injective objects (in the category

of metric spaces with 1-Lipschitz maps); they have also appeared in e.g. functional analysis

and �xed point theory [Sin79; Soa79], and theoretical computer science [CL94]. In this

article we use the following de�nition, known under the name `hyperconvexity' : a metric

space (X, d) is injective if for every family of points xi ∈ X and radii ri > 0 such that

d(xi, xj) ≤ ri + rj for every i, j ∈ I the intersection
⋂
B(xi, ri) (of closed balls) is non-

empty. As is shown in [Isb64], each metric space X admits an injective hull E(X) �

the `smallest' injective metric space that contains X. Then the combinatorial dimension

[Dre84] is de�ned as dimcombX = sup{dimE(Y ) : Y ⊆ X, |Y | < ∞}. For more details

about the notion of an injective metric space and of the injective hull E(X) of a metric

space X one may also see e.g. [Lan13]. For more about Helly graphs and groups one may

see e.g. [Cha+24].

Corollary II. A group G acting geometrically on:

(i) either a �nite-dimensional proper injective metric space X

(ii) or a locally �nite Helly graph Γ

admits an EZ-structure.

Remark III. In view of [DL15, Theorems 1.1 and 1.2], if X is a proper metric space

of �nite combinatorial dimension or such that every bounded subset of X has �nite com-

binatorial dimension, and admits a conical bicombing, then X admits a ccc, reversible

bicombing, which is a unique convex bicombing on X, therefore is equivariant with re-

spect to the full isometry group of X.

Proof. (i) By [Lan13, Proposition 3.8(1)], X admits a conical bicombing and, since for

each subspace Y ⊆ X the injective hull E(Y ) embeds into E(X) = X (see e.g. [Lan13,

Proposition 3.5(1)]), we have that dimcombX ≤ dimX < ∞. Therefore the claim follows

by Remark III and Theorem I.

11
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(ii) By [Cha+24, Theorem 6.3], the action of G extends to a geometric action on

the injective hull E(Γ), which is a proper injective metric space, and which is �nite-

dimensional as a locally �nite polyhedral complex on which the group G acts cocompactly.

The claim follows by (i).

Croke and Kleiner [CK00] showed that in the case of a group acting geometrically on

two CAT(0) spaces X and Y , their boundaries ∂X and ∂Y may be non-homeomorphic.

Since CAT(0) spaces are ccc-bicombable, this provides examples of non-homeomorphic

boundaries of a group acting geometrically on a ccc-bicombable space. However, even in

the CAT(0) world, restricting to some particular cases of spaces and/or groups brings one

to a situation when a boundary of a group is well de�ned, up to homeomorphism. Such

phenomenon is called `boundary rigidity' [Rua99; Hos03; HK05]. Since injective spaces

form one of the most important examples of ccc-bicombable spaces, and their geometry

seems very `rigid' in a sense, a natural question is whether the boundary in this case is

unique up to homeomorphism. We give a negative answer in the following theorem.

Theorem IV (Theorem 4.1). There exists a group G acting geometrically on two proper

�nite-dimensional injective metric spaces X1, X2 with convex bicombings σ1, σ2, respect-

ively, such that ∂σ1X1 and ∂σ2X2 are not homeomorphic.

The example of the group G from the above theorem is the original Croke�Kleiner ex-

ample [CK00]. The two injective spaces X1, X2 are basically the Croke�Kleiner polygonal

complexes carefully equipped with two di�erent injective metrics. It is intriguing that,

unlike in the CAT(0) case, the injective metric structure imposes severe restrictions on

the gluing pattern within the complexes. In particular, we are able to produce only two

homeomorphism types of boundaries for the given group G. In the CAT(0) case in�n-

itely many pairwise non-homeomorphic boundaries have been produced [Wil05; Moo10].

Furthermore, at the moment we do not know whether boundaries of Helly groups are

unique, that is, whether there exists a group acting on two Helly graphs whose associated

boundaries are non-homeomorphic � see 9.Q1 for more detail.

Since CAT(0) groups and word hyperbolic groups are examples of groups acting geo-

metrically on ccc-bicombable spaces, a natural question arises about relations between all

types of boundaries. It is clear that if a word hyperbolic group acts geometrically on a

space admitting a ccc bicombing σ, then the boundary ∂σX coincides with the Gromov

boundary. For the CAT(0) spaces the situation is much more subtle, even in, otherwise

restricted, case of CAT(0) cubical complexes. Here we have been able to obtain the

following result in dimension 2.

12
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Theorem V (Corollary 5.4). Let X be a locally �nite CAT(0) cube complex of dimension

at most 2. Let σp be the convex bicombing on (X, dp) for p ∈ {2,∞}. Then the identity

of X extends to a homeomorphism between Xσ2 and Xσ∞, in particular the boundaries

∂σ2X and ∂σ∞X are homeomorphic.

In fact, we prove a more general result that the geodesics from both bicombings follow

the same lines � see Theorem 5.2 � which in view of Proposition 4.8 implies the theorem

above.

Our further results concern properties of the boundary analogous to the ones of CAT(0)

boundary and the Gromov boundary. We were able to extend some results concerning

the CAT(0) case to the more general setting of ccc-bicombable spaces.

The �rst of such results is the analogue of the result of Osajda��wiatkowski [O�15]

(cf. also [Mor16]) concerning the existence of a particular metric on the boundary, and

consequently, existence of a well-de�ned quasisymmetric structure.

Proposition VI (see Proposition 6.1(v)). Let (X, d) be a complete metric space that

admits an action of a group G and a ccc, G-equivariant bicombing σ. Then there exists

a metric dq on ∂σX such that the extension of the action of each element of G to Xσ

restricts to a quasisymmetry of (∂σX, dq).

Recall that in the word hyperbolic case an analogous quasisymmetric structure plays

an important role in understanding the group. None such spectacular applications are

known in the CAT(0) setting at the moment, due to a much looser connection between the

boundary and the group. The metric from the above proposition has been used in research

regarding the linearly-controlled dimension and the asymptotic dimension [Mor16]; we also

use it, as a convenient tool in the further course of the text.

An important application of EZ-structures is a consequence of the relation between the

topology of the boundary and algebraic properties of the group. Such relations are quite

well understood in the word hyperbolic and CAT(0) case, see eg. [Bow98; Swe99; PS09].

We extend such studies to the case of groups acting geometrically on ccc-bicombable

spaces. Here is a minor result in this direction.

Proposition VII (Proposition 7.1). Let G = G1 ∗Z G2 (with G1 ̸= Z ̸= G2), where

Z is virtually Z, act geometrically on a proper metric space (X, dX) that admits a ccc,

reversible, G-equivariant bicombing σ. Then there exists a separating pair of points in the

boundary ∂σX.

13
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Another result analogous to the CAT(0) case is the following theorem about bound-

aries of groups containing abelian subgroups. In particular, besides boundaries of ccc-

bicombable spaces coinciding with the Gromov or CAT(0) boundaries, this provides the

�rst basic examples of EZ-structures for groups acting geometrically on ccc-bicombable

spaces � such boundaries of free abelian groups are spheres, the same as in the CAT(0)

case.

Proposition VIII (Proposition 7.2). Let G be group that contains a free abelian sub-

group Zn ∼= A < G and acts geometrically on a proper metric space X that admits a ccc,

reversible, G-equivariant bicombing σX . Then ∂σXX contains a homeomorphic copy of

Sn−1. Moreover, if A is of �nite index in G, then ∂σXX ∼= Sn−1.

The proof of an analogous statement in the CAT(0) setting easily follows from the fact

that the minset of A, which is a convex subset of X, splits by the Flat Torus Theorem

[BH99, II.7.2] as a metric product with one of the factors being an n-dimensional Euclidean

space F , giving an n-dimensional �at F as a convex subset of the space X. However, in

the context of spaces admitting ccc, reversible bicombings, even though �ats exist, there

is no such splitting nor such convexity of �ats � see the �rst paragraph of the proof of

the above proposition � which leads us to approaching the problem in a more elementary

way.

In the case of a group G acting geometrically on a space X, the Alexander�Spanier

cohomology (which is equivalent to the �ech cohomology) of the boundary describes some

cohomological properties of the group � e.g. one has the Bestvina�Mess formula [Bes96]

(in the torsion-free case), or in the case of groups acting ccc-bicombable spaces, one has the

isomorphism between the group cohomology H∗+1(G,ZG) and the reduced cohomology of

the boundary ˜̄H∗(∂σX) (see Remark 8.10). In this paper we present two ccc-counterparts

of important results concerning the topology of CAT(0) boundaries of spaces acted upon

cocompactly by a group, see [GO07; Ont05]. The meaning of the �rst of them is that

the Alexander�Spanier cohomology behaves quite well with respect to the topology � it

indicates the dimension of the boundary.

Theorem IX (Theorem 8.8). Let X be a non-compact �nite-dimensional proper metric

space that admits a ccc geodesic bicombing σ and a cocompact group action via isometries.

Then the reduced Alexander�Spanier cohomology group ˜̄Hdim ∂σX(∂σX) is non-zero.

The second result is a pretty immediate consequence of the �rst one, but is very useful

by itself. We say that a space X that admits a ccc bicombing σ is almost σ-geodesically

complete if the (the images of) σ-rays originating from some (equivalenty, any) point of

14
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X are coarsely dense in X. This property allows one to perform a `push-out' on various

objects (e.g. paths or subspaces) from the space X `towards in�nity', in particular, to the

boundary. It makes it possible to `transfer' various reasonings between the space and its

boundary hence and forth.

Theorem X (Theorem 8.1). Assume that X is a proper non-compact �nite-dimensional

geodesic metric space that admits a ccc geodesic bicombing σ and a cocompact group action

via isometries. Then X is almost σ-geodesically complete.

In the course of this article, we prove also the following minor results that may be

themselves of some interest.

In Proposition 1.3 we note that the construction from [BM19] of a conical, reversible

bicombing out of a conical one, is equivariant, which leads to the fact that a �nite group

acting on a space that admits a conical bicombing has a �xed point.

In Proposition 4.6 we give a direct proof of the fact that local geodesics of a ccc

bicombing are global geodesics of this bicombing (such fact could have been deduced

from a more general setting in [Mie17]).

In Proposition 5.11 we state and prove an observation that the boundary of a product of

proper ccc-bicombable spacesX, Y , with respect to a naturally de�ned product bicombing,

is the join of the boundaries of X and Y .

Organisation of the paper. In Section 1 we establish some notation, as well as

provide and discuss some general notions used later in this article. We also prove Pro-

position 1.3.

In Section 2 we recall the construction of the boundary-compacti�cation via geodesic

rays as in [DL15], prove some preliminary facts about this construction, and in Subsec-

tion 2.1 we prove the existence of an EZ-structure (Theorem I) relying on this construction.

In Section 3 we recall the construction of the boundary-compacti�cation via the Gel-

fand dual from [EW23] (in the, less general compared to [EW23], setting of metric spaces);

in Subsection 3.1 we prove the existence of an EZ-structure (Theorem I) relying on this

construction, and discuss the obtained EZ-structures; in Subsection 3.2 we prove that

the EZ-structures obtained in Subsections 2.1 and 3.1 are equivalent (Proposition 3.6 and

Corollary 3.7).

In Section 4 we prove the non-uniqueness of the boundary in the injective case �

Theorem 4.1 (Thm. IV). During the preparations for this proof we prove Propositions 4.6

and 4.8.
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In Section 5 we discuss the boundaries of CAT(0) cube complexes equipped with

piecewise-ℓ∞ metrics � justifying Theorem 5.2 and Corollary 5.4 (Thm. V) � and prove

a proposition concerning the boundary of the product of spaces (Proposition 5.11).

In Section 6 we discuss a metric on the boundary that leads to a quasisymmetric

structure on the boundary of ccc-bicombable spaces (Proposition 6.1, cf. Prop. VI).

In Section 7 we use the existence of axes and �ats in bicombable spaces to prove

Proposition 7.1 (Prop. VII) and Proposition 7.2 (Prop. VIII).

Section 8 concerns almost geodesic completeness for ccc-bicombable spaces: in Subsec-

tion 8.1 we prove some preparatory lemmas, and in Subsection 8.2 we prove Theorem 8.8

(Thm. IX) and Theorem 8.1 (Thm. X).

In Section 9 we collect and formulate some problems and open questions.

Acknowledgements. I would like to thank Damian Osajda for the introduction to

the topic, and Jan Dymara for helpful conversations. The author was partially supported

by (Polish) Narodowe Centrum Nauki, grant no 2020/37/N/ST1/01952.

1. Preliminaries

Let (X, d) be a metric space. Let x ∈ X, r > 0 and A ⊆ X. We denote by BX(x, r)

(resp. BX(x, r))) the open (resp. closed) ball of radius r around x, and put BX(A, r) :=⋃
x∈ABX(x, r) and BX(A, r) :=

⋃
x∈ABX(x, r). We denote by idX the identity (map) on

the space X.

In this article we tend to omit the space-related sub- and superscripts of various objects

when the space we are referring to is clear from the context.

Basic notions from basic coarse geometry. Let (X, dX) and (Y, dY ) be metric

spaces.

For a subset A ⊆ X and C > 0, we say that the set A is C-dense in X if B(A,C) = X.

For a pair of maps f, f ′ : X → Y , we say that they are at �nite distance (from each

other) whenever there exists a constant C > 0 such that for all x ∈ X the inequality

dY (f(x), f
′(x)) ≤ C holds.

We say that a map f : X → Y is:

• coarsely Lipschitz, if there exists C > 0 such that for all x, x′ ∈ X the inequality

dY (f(x), f(x
′)) ≤ CdX(x, x

′) + C holds;

• a quasi-isometric embedding, if there exists C > 0 such that for all x, x′ ∈ X the

inequality C−1dX(x, x
′)− C ≤ dY (f(x), f(x

′)) ≤ CdX(x, x
′) + C holds;
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• a quasi-isometry, if it is coarsely Lipschitz and admits a quasi-inverse, i.e. a coarsely

Lipschitz function g : Y → X such that f ◦ g and g ◦ f are at �nite distance from idY

and idX , respectively.

An elementary argument shows that any quasi-inverse of a quasi-isometry X → Y is

automatically a quasi-isometry Y → X. Another elementary argument shows that a

function f : X → Y is a quasi-isometry i� it is a quasi-isometric embedding whose image

is C-dense in Y for some C > 0.

Geodesic bicombings. We denote by im γ the image of the curve γ : I → X, where

I ⊆ R is a possibly in�nite interval.

Definition 1.1. Let (X, d) be a geodesic metric space. A (geodesic) bicombing σ is

a continuous function σ : X × X × [0, 1] → X such that for each x, y ∈ X the function

σxy := σ(x, y, · ) is a constant speed geodesic from x to y; we call each function σxy a

σ-geodesic. We say that a bicombing σ is:

• consistent, if imσσxy(s),σxy(t) = imσxy|[s,t] for all x, y ∈ X and s, t ∈ [0, 1] with s < t;

• conical, if d(σxy(t), σx′y′(t)) ≤ (1− t)d(x, x′)+ td(y, y′) for all x, y, x′, y′ ∈ X, t ∈ [0, 1];

• convex, if the function [0, 1] ∋ t 7→ d(σxx′(t), σyy′(t)) is convex for all x, x′, y, y′ ∈ X;

• reversible, if σxy(t) = σyx(1− t) for all x, y ∈ X, t ∈ [0, 1];

• given an action of a group G on X and g ∈ G, g-equivariant, if gσxy = σgx,gy for all

x, y ∈ X, and G-equivariant, if it is g-equivariant for all g ∈ G.

We say that a subset A ⊆ X is σ-convex if imσxy ⊆ A for any x, y ∈ A.

Remark 1.2. It is clear that every convex bicombing is conical. The converse holds for

consistent bicombings � we need to show that given x1, y1, x2, y2 ∈ X, 0 ≤ s < t ≤ 1 and

α ∈ [0, 1], we have that

d(σx1,y1(αs+ (1− α)t), σx2,y2(αs+ (1− α)t))

≤ αd(σx1,y1(s), σx2,y2(s)) + (1− α)d(σx1,y1(t), σx2,y2(t)).

Indeed, this inequality holds, since by consistency we have that σσxi,yi (s),σxi,yi (t)
(α) =

σxi,yi(αs + (1 − α)t) for any i ∈ {1, 2} and α ∈ [0, 1], so the inequality above reduces to

an inequality asserted in the de�nition of conicality.

Bearing in mind the remark above, we call a geodesic bicombing a ccc bicombing if it

is consistent, conical, and � therefore � convex.

We note that the following proposition follows from an appropriate application of

methods and theorems due to Basso, Descombes, Lang and Miesch.
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Proposition 1.3. Assume that G is a �nite group acting of a metric space X via

isometries, and that X admits a conical, G-equivariant geodesic bicombing σ. Then the

action of G on X has a �xed point.

Proof. Basso and Miesch in [BM19, Proposition 1.3] used the following procedure to

produce from a conical bicombing σ a `midpoint map'm : X×X → X, and then a conical,

reversible bicombing σR. Let x, y ∈ X. De�ne x0 := x, y0 := y, and xn+1 := σxn,yn(1/2),

yn+1 := σyn,xn(1/2) for n ∈ N. Then the sequences (xn) and (yn) are convergent to the

same limit; de�ne m(x, y) to be this limit. Finally, σR
xy(t) := m(σxy(t), σyx(1− t)) de�nes

a conical, reversible bicombing on X. It is easy to check that, since σ is G-equivariant,

the constructions of the sequences xn and yn, of the map m, and of the bicombing σR are

all also G-equivariant.

Descombes, Lang and Basso [DL16; Bas18], building on [EH99; Nav13], introduced a

construction of barycentre maps barn : X
n → X for n ∈ N for spaces admitting conical

bicombings. If the input bicombing is additionally reversible, then the functions barn are

invariant under permuting their arguments (see [DL16, Theorem 4.1(2)] or [Bas18, Pro-

position 3.4(4)]) and, if the input bicombing is G-equivariant, then the barycentre maps

are also G-equivariant (see [DL16, Theorem 4.1(3)] or [Bas18, around formula (3.5)]). It

is now easy to see that the barycentre of any orbit of G constructed using the bicombing

σR is a �xed point of the action of G on X.

Euclidean retracts and absolute retracts. A space is a Euclidean retract (ER) if

it can be embedded in some Euclidean space as its retract.

A space is an absolute retract (AR) if, whenever it is embedded into a metric space Y

as a closed subspace A, the subspace A is a retract of the space Y .

A locally compact, separable metric space is an ER i� it is �nite-dimensional, contract-

ible and locally contractible. We provide an outline of the proof of this characterisation

in the following proposition, for completess.

Proposition 1.4. Let X be a metric space. Then:

(i) if X locally compact and separable, then X is an ER i� X is a �nite-dimensional AR;

(ii) if X is �nite-dimensional, then X is an AR i� X is contractible and locally contract-

ible.

Proof. (i), the =⇒ implication. Let ı : X → Rn be an embedding such that the

set ı(X) is a retract of the space Rn. Since X is locally compact, there exists an open

subset U ⊆ Rn such that ı(X) is contained in U as a closed subset. Then a standard trick
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of taking the product of the map ı with the map X ∋ x 7→ d(ı(x),Rn \ U)−1 ∈ R gives

an embedding of X into Rn+1 as a closed subset. Therefore dimX ≤ n + 1, see [Eng78,

Theorem 3.1.4].

Assume that we have an embedding ȷ ofX into a metric space Y such that ȷ(X) is closed

in Y . By the Tietze's Extension Theorem, the homeomorphism ı◦ȷ−1 : ȷ(X) → ı(X) ⊆ Rn

can be extended to a map Y → Rn. Composing this map with the retraction of Rn onto

ı(X), and then with the inverse of the homeomorphism ı ◦ ȷ−1 gives a retraction of Y

onto ȷ(X).

(i), the ⇐= implication. By the Embedding Theorem, see [Eng78, Theorem 1.11.4],

the separable metric space X embeds into a Euclidean space Rn. As in the �rst paragraph

of the proof, by local compactness of X, the space X can be embedded into Rn+1 as a

closed subset. Then the AR-ness of X gives the desired retraction.

(ii) This is exactly the equivalence of (a) and (b) in [Hu65, Theorem V.11.1].

For more information on the topic one may refer to [Hu65] or [vMi89], or to the concise

introduction in [GM19, Section 2].

EZ-structures. A compact subset Z of a compact space X is a Z-set in X if there

exists a homotopy {Ht :X → X : t ∈ [0, 1]} such that H0 = idX and Ht(X) ∩ Z = ∅ for

any t > 0.

A sequence Kn of subsets of a topological space X is called a null-sequence if for every

open cover U of X, for all but �nitely many n the set Kn is U-small, that is, there exists

a set U ∈ U such that Kn ⊆ U .

Definition 1.5. Let Z ⊆ X and G act geometrically on X \ Z. The pair (X, Z) is an

EZ-structure for G if X an ER, Z is a Z-set in X, (gK)g∈G is a null-sequence in X \ Z
for every compact set K ⊆ X \ Z, and the action of G on X \ Z extends to an action by

homeomorphisms on X.

The notion of the Z-structure has been introduced by Bestvina in [Bes96], and its

equivariant version, the EZ-structure, has been introduced in [FL05]. These notions have

later been studied, precised and generalised in e.g. [Dra06; OP09]. We note that there

exist several variations of the de�nition of the EZ-structure, mainly di�ering with the

above by altering the ER-ness assumption to an AR-ness assumption, or by altering the

condition that the group action is geometric to other conditions imposed on the group

action. In the de�nition above we followed the last of the mentioned articles.

Gluings. Further in this article we often encounter the following gluing setting. We are

given a family of metric spaces (Xi, di) for i ∈ I and a surjective map π :
⊔

i∈I Xi → X such
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that π restricted to each of the Xi is one-to-one, and such that for each i, j ∈ I the map

π|−1
Xj

◦π|Xi
induces an isometry from (π|−1

Xi
(π(Xi)∩π(Xj)), di) to (π|−1

Xj
(π(Xi)∩π(Xj)), dj).

Such a map π is called a gluing map. We construct the following gluing pseudometric

on X, which often turns out to be a metric in our settings. Let d(x, x′) := inf{len(P ) :
P is a (x, x′)�gluing path}, where an (x, x′)�gluing path is a sequence of points P = (x =

x0, . . . , xn = x′) such that n ∈ N and for each 0 ≤ j ≤ n− 1 there exists ij ∈ I such that

xj, xj+1 ∈ π(Xij), and we de�ne its length as len(P ) :=
∑n−1

i=0 dXij
(xj, xj+1). We often do

not distinguish the set Xi from π(Xi) and treat it as a subset of X.

2. Boundary via geodesic rays

We begin with a brief summary of the construction in [DL15, Section 5].

Let (X, d) be a complete geodesic metric space with a ccc bicombing σ. A σ-ray in

X is an isometric embedding ξ : [0,∞) → X such that imσξ(0)ξ(t) = im ξ|[0,t] for every

t ≥ 0. Two σ-rays ξ, ζ are asymptotic if their images are at �nite Hausdor� distance,

equivalently, supt≥0 d(ξ(t), ζ(t)) < ∞, and we denote by [ξ] the set of σ-rays asymptotic

to the σ-ray ξ.

The boundary ∂σX is a topological space whose underlying set consists of the set of

classes of asymptotic σ-rays. By [DL15, Proposition 5.2], for each basepoint o ∈ X,

every class x̄ ∈ ∂σX has a unique representative ϱo,x̄ that originates in o, therefore the

boundary ∂σX may be identi�ed with the set of σ-rays originating at some arbitrary

�xed point o. We often consider the set Xσ := X ∪ ∂σX, and extend the de�nition of

ϱ to X by de�ning functions ϱo,x : [0,∞) → X for x ∈ X by stopping after reaching x,

i.e. ϱo,x(t) = σox(min(t/d(o, x), 1)) for any o, x ∈ X, and identify point x ∈ X with ϱo,x.

The topology on Xσ is given by the following base: for a �xed basepoint o ∈ X, take

{Uo(x̄, t, ϵ) : x̄ ∈ Xσ, t ≥ 0, ϵ > 0} where Uo(x̄, t, ϵ) = {ȳ ∈ Xσ : d(ϱo,ȳ(t), ϱo,x̄(t)) < ϵ}.
One can show that the resulting topology does not depend on the choice of the basepoint

o, the topology on Xσ extends the topology on X � see [DL15, Lemma 5.3 and above]

� and the topology on ∂σX has a base {Uo(x̄, t, ϵ) ∩ ∂σX : x̄ ∈ ∂σX, t ≥ 0, ϵ > 0}. One
may observe that the topology coincides with the topology arising from viewing Xσ as

the inverse limit of the system ({XR : R ≥ 0}, {πR
r : XR → Xr : 0 ≤ r ≤ R}) where

XR = B(o,R)(=
⋃
{ϱo,x([0, R]) : x ∈ X}) and πR

r (ϱo,x(R)) = ϱo,x(r) for all x ∈ X (which

is well-de�ned by consistency of σ). Thus Xσ admits a metric

do(x̄, ȳ) :=
∞∑
n=1

2−nmin
(
d(ϱo,x̄(n), ϱo,ȳ(n)), 1

)
, (2-1)

arising from viewing Xσ as the subspace {(xn)n∈N : xn ∈ Xn, π
n+1
n (xn+1) = xn} ⊆

∏
Xn
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(we note that this metric is in the same spirit as the metric Do introduced in [DL15]),

and the space Xσ is compact i� X is proper. Note that for all r > 0 the map given by

πr(x̄) = ϱo,x̄(r) corresponds to the projection map πr : Xσ → Xr from the de�nition of an

inverse limit.

We �nish this introduction with three useful observations. Proposition 2.2 will be used

in the proof of Theorem I in this section, and Proposition 2.1 and Proposition 2.4 will be

used in other parts of this article.

Proposition 2.1. Assume that σ is a ccc bicombing on a complete metric space (X, d)

and ζ, η are σ-rays.

(i) The function D(t) := d(ζ(t), η(t)) is convex. In particular, if ζ and η are asymptotic,

then D is non-increasing.

(ii) Let Ξ be a family of σ-rays originating from a common point and such that the set

{[ξ] : ξ ∈ Ξ} is compact in ∂σX. If

(∃D ≥ 0)(∀r > 0)(∃t ≥ r, ξ ∈ Ξ)(d(ζ(t), im ξ) ≤ D),

then ζ is asymptotic to some σ-ray from Ξ.

(iii) The σ-rays ζ and η are asymptotic i� (∃D ≥ 0)(∀r > 0)(∃t ≥ r)(d(ζ(t), im η) ≤ D).

Proof. (i) Follows from convexity of σ.

(ii) Assume that there exists D ≥ 0 and sequences tn → ∞, sn ≥ 0 and ξn ∈ Ξ, such

that d(ζ(tn), ξn(sn)) ≤ D. Since ζ and ξn are geodesic rays,

|tn − sn| = |d(ζ(tn), ζ(0))− d(ξn(0), ξn(sn))|

≤ d(ζ(tn), ξn(sn)) + d(ζ(0), ξn(0)) ≤ D + d(ζ(0), ξn(0)),

and d(ζ(tn), ξn(tn)) ≤ 2D+d(ζ(0), ξn(0)) for any n ∈ N. By compactness, one may choose

a subsequence nk such that [ξnk
] converge to [ξ] for some ξ ∈ Ξ. Then, for any k and

t ≤ tnk
, by convexity of σ we have that

d(ζ(t), ξ(t)) ≤ d(ζ(t), ξnk
(t)) + d(ξnk

(t), ξ(t))

≤ max
(
d(ζ(0), ξnk

(0)), d(ζ(tnk
), ξnk

(tnk
))
)
+ d(ξnk

(t), ξ(t))

≤ 2D + d(ζ(0), ξnk
(0)) + d(ξnk

(t), ξ(t)).

Therefore, since the σ-rays from Ξ are based in one point, and tnk
→ ∞, and ξnk

(t) → ξ(t)

for all t ≥ 0, the σ-rays ξ and ζ are asymptotic.

(iii) The =⇒ implication follows from (i). The ⇐= implication follows from (ii) with

Ξ = {η}.
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The following builds on [DL15, inequality (5.2)].

Proposition 2.2. Let (X, d) be a metric space with a ccc bicombing σ, and x, y, o ∈ X,

r > 0 be such that max(d(o, x), d(o, y)) ≥ r. Then d(ϱo,x(r), ϱo,y(r)) ≤ 2 ·d(x, y) ·r/d(o, x).

Proof. When d(o, x) ≥ d(o, y) and d(o, x) ≥ r, the inequality is (almost) [DL15, in-

equality (5.2)] and can be justi�ed as follows: note that ϱo,x(r) = σo,x(r/d(o, x)), and

denote y∼r = σo,y(r/d(o, x)); then

d(ϱo,x(r), ϱo,y(r)) ≤ d(ϱo,x(r), y∼r) + d(y∼r, ϱo,y(r))

≤ r

d(o, x)
d(x, y) + d(o, ϱo,y(r))− d(o, y∼r)

=
r

d(o, x)
d(x, y) + min(r, d(o, y))− r

d(o, x)
d(o, y)

≤ r

d(o, x)
d(x, y) + r

d(o, x)− d(o, y)

d(o, x)
≤ r

d(o, x)
d(x, y) + r

d(x, y)

d(o, x)
= 2r

d(x, y)

d(o, x)
.

If d(o, y) ≥ d(o, x) and d(o, y) ≥ r, the above gives that

d(ϱo,x(r), ϱo,y(r)) ≤ 2rd(x, y)/d(o, y) ≤ 2rd(x, y)/d(o, x).

Definition 2.3. Let o ∈ X. We de�ne a map ℓo : Xσ → [0,∞] by putting ℓo(x) =

d(o, x) for x ∈ X and ℓo(x̄) = ∞ for x̄ ∈ ∂σX; and de�ne an exponential map expo : Xσ ×
[0,∞] → Xσ by expo(x̄, t) = ϱo,x̄(t) for x̄ ∈ Xσ and t <∞, and expo(x̄,∞) = x̄.

Proposition 2.4. Let (X, d) be a complete metric space with a ccc bicombing σ. Then

the maps ℓo and expo are continuous for any basepoint o ∈ X.

Proof. The function ℓo is continuous since it is continuous on X as the metric d is

continuous with respect to itself, and for x̄ ∈ ∂σX we have that ℓo(Uo(x̄, R, δ)) ⊆ [R−δ,∞].

For the proof of continuity of expo, assume that we have sequences (x̄n) ⊆ Xσ con-

vergent to x̄ ∈ Xσ and (tn) ⊆ [0,∞] convergent to t ∈ [0,∞]. If t = ∞, then for any

s <∞ we have for su�ciently large n that ϱo,expo(x̄n,tn)(s) = ϱo,x̄n(s), as tn → t = ∞; the

latter converges to ϱo,x̄(s) = ϱo,expo(x̄,∞)(s), as x̄n → x̄; therefore expo(x̄n, tn) converges to

expo(x̄,∞). Assume that t < ∞. If x̄ ∈ X, then x̄n ∈ X for su�ciently large n, so we

can write by continuity of σ that

expo(x̄n, tn) = σ

(
o, x̄n,

min(tn, d(o, x̄n))

d(o, x̄n)

)
−→ σ

(
o, x̄,

min(t, d(o, x̄))

d(o, x̄)

)
= expo(x̄, t).

Assume that x̄ ∈ ∂σX. For su�ciently large n we have that tn ≤ R (and thus t ≤ R)

for some R < ∞. Then, by consistency of σ, we have for su�ciently large n that

expo(x̄n, tn) = expo(expo(x̄n, R), tn). Since expo(x̄n, R) converges to expo(x̄, R), as x̄n
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converges to x̄, we can use the previous case to conclude that expo(x̄n, tn) converges to

expo(expo(x̄, R), t) = expo(x̄, t).

2.1. The EZ-structure

Below we describe how the above construction of boundary may be used to construct an

EZ-structure.

Proof. (of Theorem I) We show that (Xσ, ∂σX) is an EZ-structure for G (see De�n-

ition 1.5). Fix any basepoint o ∈ X.

The boundary ∂σX is a Z-set in Xσ by [DL15, Theorem 1.4]. Fix any homotopy

{Ht : t ∈ [0, 1]} from the de�nition of Z-set.

Now we show that the compact space Xσ is an ER, using the characterisation from

Proposition 1.4. The space Xσ is contractible and locally contractible by [DL15, Theorem

1.4]. The fact that the dimension of Xσ is not greater than the dimension of X, therefore

�nite, is a standard task in topology and can be justi�ed as follows. Let U be an open

cover of Xσ. Let λ be the Lebesgue number of U . Since X is �nite-dimensional, there

exists an open cover V of X consisting of sets of do-diameter at most λ/3 and having

empty intersections of each of its subfamilies of cardinality dimX + 2. By compactness

of Xσ, there exists t0 > 0 such that for all x ∈ Xσ we have do(Ht0(x), x) < λ/3. It

follows that {H−1
t0 (V ) : V ∈ V} is an open cover of Xσ, is a re�nement of U , and has

the property that intersections of any of its dimX + 2 sets are empty. We note that a

similar proof of the fact that dimXσ ≤ dimX when dimX < ∞ is also present in the

proof of [DL15, Theorem 1.4], where X is not assumed to be proper and a suitable value

t0 is stated explicitly using the metric Do, or in the proof of [EW23, Theorem 7.10].

We claim that for any compact set K ⊆ X and any open cover U of Xσ all but �nitely

many of the translates (gK)g∈G are U -small. By properness of X, K ⊆ B(o,R) for some

R ≥ 0. By compactness, let {Uo(x̄i, ti, ϵi) ∩ ∂σX : 1 ≤ i ≤ n} for some x̄i ∈ ∂σX, ti ≥ 0,

ϵi > 0 be a �nite cover of ∂σX such that each element of {Uo(x̄i, ti, 2ϵi) : 1 ≤ i ≤ n} is

contained in some element of U . Since Xσ \
⋃
Uo(x̄i, ti, ϵi) is a compact subset of X, it is

contained in a ball B(o,R0) for some R0 ≥ 0. Take g ∈ G such that d(o, go) > R0. Then

there exists some 1 ≤ k ≤ n such that go ∈ Uo(x̄k, tk, ϵk). If, additionally, d(o, go) > tk

and 2Rtk/d(o, go) ≤ ϵk, then, by Proposition 2.2 with r = tk and x = go,

gK ⊆ gB(o,R) = B(go,R) ⊆ Uo(go, tk, 2Rtk/d(o, go)) ⊆ Uo(go, tk, ϵk) ⊆ Uo(x̄k, tk, 2ϵk),

which is contained in some set from the family U . Since G acts on X properly, all but

�nitely many g ∈ G satisfy d(o, go) > max
(
{R0}∪{ti : 1 ≤ i ≤ n}∪{2Rti/ϵi : 1 ≤ i ≤ n}

)
,
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and the claim follows.

We extend the action of the group G on X to Xσ by de�ning gx̄ := [t 7→ gϱo,x̄(t)]

for all g ∈ G, which is well-de�ned since G acts via isometries and σ is G-equivariant.

It remains to show that such an extended action is an action via homeomorphisms. By

G-equivariance of σ, for any g ∈ G, x̄ ∈ Xσ, t ≥ 0 and ϵ > 0 we have that gUo(x̄, t, ϵ) =

Ugo(gx̄, t, ϵ). Therefore g maps a base of the topology of Xσ arising from using the

basepoint o to another base, resulting from taking go as the basepoint.

3. Boundary via Gelfand dual

In this section we discuss the EZ-structure resulting from the construction of the boundary

introduced by Engel and Wul� in [EW23]. Then we prove equivalence of this EZ-structure

with the one constructed in Section 2. We try to give a more elementary treatment of the

subject compared to the original paper.

Below we brie�y describe the construction of the boundary from [EW23], which applies

to the so called coarse spaces, in our less general metric setting (see [EW23, Example

2.3]). Let (X, d) be a metric space and �x a basepoint o ∈ X. We say that a function

Σ: X × N → X, where we often use the notation Σn(x) = Σ(x, n), is a combing, and say

that (X,Σ) is a combed space, if the following are satis�ed:

• Σn(o) = o = Σ0(x) for all x ∈ X, n ∈ N;

• for all R ≥ 0 there exists N ∈ N such that Σn(x) = x for all n ≥ N and x ∈ B(o,R);

• for all D > 0 there exists C such that for all x, x′ ∈ X with d(x, x′) ≤ D, and for all

n, n′ ∈ N with |n− n′| ≤ D, it holds that d(Σ(x, n),Σ(x′, n′)) ≤ C.

(An example of a combing, related to Section 2, is Σ(x, n) := ϱo,x(n).) We say that a

combing Σ is coherent if there exists R ≥ 0 such that d(Σn(x),Σm(Σn(x))) ≤ R for all

m ≤ n ∈ N and x ∈ X. A map α : X → Y is a morphism between combed spaces (X,ΣX)

and (Y,ΣY ) if the function (x, n) 7→ d(α(ΣX(x, n)),ΣY (α(x), n)) is bounded (see [EW23,

Remark 2.5(a)]). Morphisms, coarsely Lipschitz maps, and being at bounded distance

work with each other in the following way.

Proposition 3.1. Assume that metric spaces (X, dX), (Y, dY ) admit combings ΣX ,ΣY ,

respectively.

(i) Let f : X → Y , g : Y → X be coarsely Lipschitz such that f ◦ g is at �nite distance

from the identity of Y . Then, if f is a morphism from (X,ΣX) to (Y,ΣY ), then g is

a morphism from (Y,ΣY ) to (X,ΣX).
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(ii) Assume that f ′ : X → Y is at �nite distance from a morphism f from (X,ΣX) to

(Y,ΣY ). Then f ′ is also a morphism from (X,ΣX) to (Y,ΣY ).

Proof. (i) Since f : X → Y is coarsely Lipschitz, there exists a constant C such that

for any y ∈ Y and n ∈ N we have

dX
(
g(ΣY (y, n)),ΣX(g(y), n)

)
≤ CdY

(
f(g(ΣY (y, n))), f(ΣX(g(y), n))

)
+ C

≤ C
(
dY

(
f(g(ΣY (y, n))),ΣY (y, n)

)
+ dY

(
ΣY (y, n),ΣY (f(g(y))), n

)
+ dY

(
ΣY (f(g(y)), n), f(ΣX(g(y), n))

))
+ C.

The claim follows, as each of 3 terms in the parentheses is bounded by a constant in-

dependent of y and n: the �rst one by the fact that f ◦ g is at �nite distance from the

identity of Y ; the second one by the fact that f ◦ g is at �nite distance from the identity

of Y , and the third (•) in the de�nition of a combing; the last one by the fact that f is a

morphism between (X,ΣX) and (Y,ΣY ).

(ii) For any x ∈ X, n ∈ N we have the following inequality:

dY
(
f ′(ΣX(x, n)),ΣY (f

′(x), n)
)
≤ dY

(
f ′(ΣX(x, n)), f(ΣX(x, n))

)
+ dY

(
f(ΣX(x, n)),ΣY (f(x), n)

)
+ dY

(
ΣY (f(x), n),ΣY (f

′(x), n)
)
.

The claim follows, as each of these 3 terms is bounded by a constant independent of x

and n: the �rst one by the fact that the functions f and f ′ are at �nite distance from

each other; the second one by the fact that f is a morphism; the last one by the fact

the functions f and f ′ are at �nite distance from each other, and the third (•) in the

de�nition of combing.

Given a coherent combing Σ on a proper metric space X, one can construct the com-

pacti�cation X
Σ
(technically, the construction below applies in a more general setting of

proper combings, see [EW23, De�nition 2.6 and Lemma 2.7]) as follows. De�ne CΣ(X) to

be the C∗-algebra of all continuous, bounded functions f : X → C such that f ◦ Σn → f

(in the supremum metric) and f has bounded variation, i.e. for all R > 0 the variation

function VarR(f)(x) := sup{|f(y) − f(x)| : y ∈ B(x,R)} is below any ϵ > 0 outside

of a compact set K(ϵ, f, R). We consider the Gelfand dual X
Σ
of CΣ(X) � the space

of non-zero multiplicative C-linear functionals on the algebra CΣ(X) (these properties

imply continuity (with norm 1), see [Lin01, Theorem 1.3.2(i)]) with the weak-∗ topology.

Taking the kernel of such functionals gives an identi�cation of the underlying set of X
Σ

with the set of maximal (proper) ideals in CΣ(X), see [Lin01, Theorem 1.3.2(ii)]. The

map X ∋ x 7→ δx ∈ X
Σ
, where δx is the evaluation at x, is a well-de�ned homeomorphic

embedding (for more details, see the proof of Proposition 3.6).
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3.1. The EZ-structure

Below we show a proof of existence of an EZ-structure, relying on the construction presen-

ted previously in this section. Next, we describe and compare the EZ-structures obtained

in this proof.

Proof. (of Theorem I) Fix a basepoint o ∈ X. By the �varc�Milnor lemma, the

group G is �nitely generated, and the map α : G→ X given by the formula α(g) = go is

a G-equivariant quasi-isometry; therefore the map Σ(x, n) := ϱo,x(n), which is clearly a

combing of X, can be moved to a combing ΣG of G using α as follows: let β : X → G be

a quasi-inverse of α and put ΣG(g, n) := β(Σ(α(g), n)) (the basepoint for ΣG is β(o)). We

list the assumptions of [EW23, Theorem 7.10 and Remark 7.15], whose conclusion is that

G admits an EZ-structure (the yet-unexplained terms appearing in this list are addressed

when needed later in the proof, in a form adapted to our metric setting): X is a Euc-

lidean retract, the space X and the Rips complex Rips(G) are G-equivariantly homotopy

equivalent, and the combing ΣG is coherent, expanding and G-coarsely equivariant. We

shall show that all these conditions are satis�ed.

By the characterisation from Proposition 1.4, the space X is an ER, as it is locally

compact, �nite-dimensional (by assumption), contractible (by the existence of bicombing)

and locally contractible (the balls in X are σ-convex because σ is conical).

Now we check that the space X and the Rips complex of G are G-equivariantly ho-

motopy equivalent. The Rips complex Rips(G) is de�ned in [EW23, De�nition 4.1 and

Example 4.4] as the (increasing) union of the Rips complexes Ripsn(G) for n ∈ N, where
the complex RipsC(G) for C > 0 is the typically discussed Rips complex, i.e. a �nite

subset T of elements of G spans a simplex of RipsC(G) i� every two elements of T are

at distance at most C. (This way every �nite tuple of elements of G spans a simplex of

Rips(G), and Rips(G) is equipped with the direct limit topology induced by the inclu-

sions Ripsn(G) ⊆ Rips(G).) In view of [Lüc05, Lemma 3.3], it is su�cient to show that

Rips(G) is a model of EG and X is a model of JG (a `numerable' version of EG, see

[Lüc05, De�nition 2.3]).

We use the homotopy characterisation of EG, see [Lüc05, Theorem 1.9(ii)], to show

that the Rips complex Rips(G) is a model for EG. Namely, we check that the stabiliser of

each element of Rips(G) under the action of G is �nite, and that for each �nite subgroup

H of G the set Rips(G)H of �xed points of the action of H on Rips(G) is contractible.

Each element x ∈ Rips(G) is contained in the interior of a simplex spanned by some

elements g1, . . . , gm ∈ G, therefore every element of the stabiliser StabG(x) of x �xes

setwise the set {gi : 1 ≤ i ≤ m}, so |StabG(x)| ≤ m < ∞. For each �nite subgroup H of
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G the set Rips(G)H is non-empty, as it contains the barycentre of the simplex spanned

by the elements of H. It is easy to verify that for each pair of points x, y ∈ Rips(G)H ,

the set Rips(G)H also contains the linear segment in Rips(G) between the points x and y.

Therefore, after �xing any point x ∈ Rips(G)H , going along linear segments in Rips(G)

towards x gives a homotopy cx : Rips(G)× [0, 1] → Rips(G), which restrict to a homotopy

Rips(G)H × [0, 1] → Rips(G)H , which contracts the set Rips(G)H to the point x. The

continuity of cx may be justi�ed by the following argument. Let ∆x be a �nite subset

of G such that x belongs to a simplex spanned by the elements of ∆x. Consider a point

y ∈ Rips(G) contained in a simplex spanned by the elements of a �nite subset ∆y of G.

We now check continuity of cx at all points of the form (y, t) for t ∈ [0, 1]. Let Uy be the

union of interiors of all of the simplices of Rips(G) that contain y. Then the set Uy is an

open neighbourhood of x in Rips(G). Let C ∈ N be greater than any distance between a

pair of points from the set ∆x ∪∆y. Then, for each n ∈ N the contraction cx restricts to

a map (Uy ∩ Ripsn(G))× [0, 1] → RipsC+n(G), which is continuous. Passing to the limit

with n gives continuity of cx on Uy × [0, 1].

We use the homotopy characterisation of JG, see [Lüc05, Theorem 2.5(ii) and De�nition

2.1], to show that X is a model of JG. Namely, we need to show that (i) X admits an

open cover {Ui : i ∈ I} such that (a) each of the sets Ui is G-invariant and admits a

G-equivariant map Ui → G/Gi for some �nite subgroup Gi of G, and (b) there exists a

locally �nite partition of unity on X via G-invariant functions, subordinate to {Ui : i ∈ I};
(ii) each �nite subgroup of G has a �xed point in X; and (iii) the projection maps

X × X → X onto the �rst coordinate and onto the second coordinate are homotopic

via a G-equivariant homotopy. Regarding property (i), �rst observe that properness of

the action of G gives that for each point x ∈ X there exists a number rx > 0 such that

for all g ∈ G either gB(x, 2rx) ∩ B(x, 2rx) = ∅ or g ∈ StabG(x), and that the stabiliser

StabG(x) is �nite. Let Ux :=
⋃
{gB(x, 2rx) : g ∈ G} and V x :=

⋃
{gB(x, rx) : g ∈ G}.

It is easy to verify that: assigning to an element gy, where g ∈ G and y ∈ B(x, 2rx),

the coset gStabG(x) gives a well-de�ned G-equivariant map Ux → G/StabG(x); and that

the map φx : X → [0,∞) de�ned by φx(y) =
∑

g∈Gmax(0, rx − d(gx, y)) is a well-de�ned

G-invariant continuous map that is non-zero precisely in the set V x. Cocompactness of

the action of G now gives that there exists a �nite set {xi : i ∈ I} such that the sets

V xi for i ∈ I form an open cover of X; let Ui := Uxi and φi := φxi for i ∈ I. The

collection {Ui : i ∈ I} satis�es the property (a). It is easy to check that the functions

X ∋ y 7→ φi(y)
/∑

j∈I φj(y) for i ∈ I form a locally �nite partition of unity subordinate

to {Ui : i ∈ I}, and are G-invariant since the functions φi are G-invariant. Property (ii)

is satis�ed by Proposition 1.3. Property (iii) is satis�ed by the fact that the bicombing σ
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gives the desired homotopy.

Observe that α is a morphism from (G,ΣG) to (X,Σ), as for any h ∈ G and n ∈ N
we have that d(α(ΣG(h, n)),Σ(α(h), n)) = d(α(β(Σ(α(h), n))),Σ(α(h), n)) is universally

bounded since αβ is at bounded distance from the identity of X. Therefore, by [EW23,

Lemma 2.8], in order to prove coherence and expandingness of ΣG, it su�ces to check

coherence and expandingness of Σ.

The fact that Σ is coherent follows directly from consistency of σ (it su�ces to take

R = 0 in the de�nition of coherent combing).

Expandingness (cf. [EW23, De�nition 2.6]) of Σ is equivalent to: there exists R ≥ 0

such that for every r ≥ 0 and n ∈ N there exists D ≥ 0 such that Σn(B(x, r)) ⊆
B(Σn(x), R) for all x ∈ X \B(o,D). In fact, this statement holds for all R > 0, and this

is what we will show. Fix any R > 0, r ≥ 0, n ∈ N, and take x, x′ ∈ X with d(o, x) ≥ n

and d(x, x′) ≤ r. Then by Proposition 2.2 we have d(Σn(x),Σn(x
′)) ≤ 2nr/d(o, x), thus

it su�ces to take D = max(n, 2nr/R).

A combing ΣY on a space Y admitting an action of G is G-coarsely equivariant if the

action of each g ∈ G on Y induces an endomorphism of (Y,ΣY ) (see [EW23, De�nition

5.14]). To show that the combing ΣG is G-coarsely equivariant, we �rst show that the

combing Σ is G-coarsely equivariant, which means that for all g ∈ G there exists R(g) ≥ 0

such that d(Σn(gx), gΣn(x)) ≤ R(g) for all x ∈ X and n ∈ N. Indeed, take g ∈ G, x ∈ X

and n ∈ N. Since σ is G-equivariant, gσox = σgo,gx. If n ≤ d(o, x) and n ≤ d(o, gx), we

have that

d(Σn(gx), gΣn(x))

≤ d

(
σo,gx

(
n

d(o, gx)

)
, σo,gx

(
n

d(go, gx)

))
+ d

(
σo,gx

(
n

d(go, gx)

)
, σgo,gx

(
n

d(go, gx)

))
≤ n|d(go, gx)− d(o, gx)|

d(o, gx)d(go, gx)
d(o, gx) +

(
1− n

d(go, gx)

)
d(o, go)

≤ d(o, go)

(
n

d(go, gx)
+ 1− n

d(go, gx)

)
= d(o, go).

If n ≥ d(o, x) (equivalently, Σn(x) = x), then

d(Σn(gx), gΣn(x)) = d(Σn(gx), gx) = max(0, d(o, gx)− n)

≤ max(0, d(o, gx)− d(o, x)) ≤ |d(o, gx)− d(go, gx)| ≤ d(o, go).

If n ≥ d(o, gx) (equivalently, Σn(gx) = gx), then, by the above with gx and g−1 in the

place of x and g, respectively, we obtain d(Σn(x), g
−1Σn(gx)) ≤ d(o, g−1o), which by

g-invariance of the metric d gives d(gΣn(x),Σn(gx)) ≤ d(go, o). Summarising, it su�ces
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to take R(g) = d(o, go), and Σ is G-coarsely equivariant.

Now we show that ΣG is G-coarsely equivariant. Let g ∈ G. By G-equivariance of α

we have that αg = gα, therefore βαg = βgα. The right-hand side is a morphism as a

composition of morphisms (β is a morphism by Proposition 3.1(i) as a quasi-inverse of

α), see [EW23, Remark 2.18], therefore βαg is an endomorphism of (G,ΣG). Since βα

is at �nite distance from the identity map of G, the map βαg is at �nite distance from

g; therefore, by Proposition 3.1(ii), the action of g on G induces an endomorphism of

(G,ΣG). Therefore ΣG is G-coarsely equivariant.

In the remaining part of this subsection we show that all EZ-structures resulting from

the proof above (for the choice involved, see Remark 3.2-3 below) are equivalent to the

EZ-structure resulting from the compacti�cation X
Σ
one would naturally consider (where

the combing Σ is as above, and its de�nition is recalled in Remark 3.2-1), and which is

among the EZ-structures resulting from the discussed proof (see Metaremark 3.3(b)). For

a precise meaning of `equivalent', see Proposition 3.4(ii).

We begin with a summary of the construction of the compacti�cation from the proof

above.

Remark 3.2. Formally, the EZ-structure constructed in the proof of Theorem I above

is (X
Σ′

, G
ΣG \ G) resulting from the following multistep procedure. (If the reader �nds

any of the steps below unsettling, they may refer to Metaremark 3.3 below.)

In the �rst paragraph of the proof above we perform the following steps.

1. Fix a basepoint o ∈ X. De�ne a combing Σ of X by Σ(x, n) := ϱo,x(n).

2. Let α be a G-equivariant quasi-isometry given by G ∋ g 7→ go ∈ X (the �varc�

Milnor Lemma) and β : X → G be its quasi-inverse. De�ne a combing ΣG of G by

ΣG(g, n) := β(Σ(α(g), n)).

Then we apply [EW23, Theorem 7.10 with Remark 7.15], which states that (XΣ′
, GΣG \G)

� which is the result of the next two steps � is an EZ-structure for G. (See [EW23,

below Lemma 7.4, and proof of Theorem 7.10].)

3. Let α′ : G→ X be a quasi-isometry of the form α′(g) = gx0 for some x0 ∈ X, and let

Σ′ be a combing on X such that α′ is a morphism from (G,ΣG) to (X,Σ′).

4. By functoriality of the construction of the boundary, [EW23, Corollary 2.18a], and

Proposition 3.1, the morphism α′ induces a homeomorphism from the boundary

G
ΣG \G of G to the boundary X

Σ′

\ X of X. Finally, the obtained EZ-structure

for G is (X
Σ′

, G
ΣG \G), which is obtained from (X

Σ′

, X
Σ′

\X) using this identi�ca-

tion of boundaries.
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In view of the identi�cation of (X
Σ′

, G
ΣG \G) with (X

Σ′

, X
Σ′

\X), we prefer to use the

latter instead of the former, and consider in the text below X
Σ′

to be the compacti�cation

resulting from the proof of Theorem I from this subsection.

Metaremark 3.3. (a) One may ask the question why we do not �nish the construction

at Step 1, and simply equip the space X with the combing Σ. The (formal) reason is

that in the proof of Theorem I in this subsection we used [EW23, Theorem 7.10] as a

black box, in which it is the group G that is the object equipped with the combing,

while the spaceX is required to be G-equivariantly homotopy equivalent with Rips(G)

and to be an ER. This is an example of a di�erence between the approaches in this

paper and in [EW23]: while the natural place for (bi)combings in this paper are

topological spaces, Engel and Wul� tend to prefer to have the combing on the group G

or its Rips complex Rips(G) � while the latter has nice abstract properties, and for it

they can perform the homotopy from the de�nition of the Z-set, [EW23, Theorem 5.7],

it does not have nice topological properties. This is the reason why they construct the

compacti�cation using Rips(G) and exchange the space that has been compacti�ed

for X. (See [EW23, beginning of Section 7]).

(b) We note that the choice α′ := α and Σ′ := Σ satis�es the properties required in

Remark 3.2-3 (as has been shown in the proof of Theorem I in this subsection),

therefore X
Σ
is one of the compacti�cations constructed in the proof of Theorem I in

this subsection.

Proposition 3.4. Let G be a group acting geometrically on a proper metric space X

that admits a ccc, G-equivariant bicombing σ, and let Σ, Σ′ be as in Remark 3.2. Then:

(i) the identity function idX : X → X is a morphism from (X,Σ) to (X,Σ′);

(ii) the function idX : X → X induces a G-equivariant homeomorphism (idX)∗ : X
Σ →

X
Σ′

�xing the copies of X in X
Σ
and X

Σ′

pointwise, that is (idX)∗(δx) = δx for all

x ∈ X.

Remark 3.5. (i) (cf. [EW23, Remark 7.15]) Regarding the action of G on the compac-

ti�cations mentioned in the statement (ii) above, we justify below that the action of

each g ∈ G on X induces endomorphisms of (X,Σ) and (X,Σ′); these induce by func-

toriality, [EW23, Corollary 2.18b], the desired homeomorphisms g∗ : X
Σ → X

Σ
and

g∗ : X
Σ′

→ X
Σ′

. The fact that the action of g induces an endomorphism of (X,Σ) has

been proved previously in this section in the proof of Theorem I. In order to justify

that g induces an endomorphism of (X,Σ′), observe that by construction of α′ we

have that gα′ = α′g, therefore gα′β = α′gβ. The right-hand side is a morphism as a
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composition of 3 morphisms (β is a morphism from (X,Σ′) to (G,ΣG) by Proposition

3.1(i) as a quasi-inverse of α′). The left-hand side is at �nite distance from g, as g acts

on X via isometries and α′β is at �nite distance from the identity of X. Therefore,

by Proposition 3.1(ii), the action of g on X induces an endomorphism of (X,Σ′).

(ii) The functoriality of the construction of the compacti�cation in [EW23, Corollary 2.18]

works in the following way. It is a standard fact that a continuous function F induces

a pullback map F ∗ between the spaces of continuous functions, and a pushforward

map F∗ between the spaces dual to these spaces of continuous functions. It turns out

that if F is a morphism of combed spaces, then F∗ gives a well-de�ned continuous

map between the compacti�cations.

Proof. (i) Since the quasi-isometry α′ is a morphism from (G,ΣG) to (X,Σ′), and β is

a morphism from (X,Σ) to (G,ΣG) (by Proposition 3.1(i), as a quasi-inverse of α, which

we have shown to be a morphism from (G,ΣG) to (X,Σ) in the proof of Theorem I in

this subsection), the map α′β is a morphism from (X,Σ) to (X,Σ′). Since both functions

α′ and α are of the form g 7→ gx for some x ∈ X, they are at �nite distance from each

other, so the function α′β is at �nite distance from αβ, which is at �nite distance from

the identity idX of X, which implies by Proposition 3.1(ii) that idX is a morphism from

(X,Σ) to (X,Σ′).

(ii) By Proposition 3.1(i), the identity idX is also a morphism from (X,Σ′) to (X,Σ),

therefore, by functoriality, [EW23, Corollary 2.18b], the induced function (idX)∗ : X
Σ →

X
Σ′

is a homeomorphism. Finally, observe that for all x ∈ X we have that (idX)∗δx = δx,

and for all g ∈ G we have that gidX = idXg, which implies that g∗(idX)∗ = (idX)∗g∗.

3.2. Equivalence of the constructed compacti�cations

In this section we prove that the constructions of the EZ-structures from Subsections 2.1

and 3.1 produce the same compacti�cation.

We note here that the pre-`moreover' part of the proposition below follows from a

stronger result, holding in a more general setting, [FO20, Corollary 8.9], in a way described

in [EW23, above Examples 3.27, and 3.27.2]. In view of this, we may see the proof of the

proposition below as a more elementary proof of a special case (with the minor addition

of G-equivariance to the considerations).

Proposition 3.6. Let (X, d) be a proper metric space that admits a ccc bicombing σ.

Let Σ be as in Remark 3.2-1. Then there exists a homeomorphism τ : Xσ → X
Σ
�xing the

copies of X in Xσ and X
Σ
pointwise, i.e. τ(x) = δx for all x ∈ X. Moreover, if a group
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G acts on X in such a way that the bicombing σ is additionally G-equivariant, then τ is

additionally G-equivariant.

In view of Proposition 3.4 and Remark 3.2, we have the following corollary.

Corollary 3.7. Let G be a group acting geometrically on a proper metric space X that

admits a ccc, G-equivariant bicombing σ, and let Xσ, X
Σ′

be the compacti�cations of X

constructed in the proofs of Theorem I in Subsections 2.1, 3.1, respectively. Then there

exists a G-equivariant homeomorphism τ : Xσ → X
Σ′

�xing the copies of X in Xσ and

X
Σ′

pointwise, i.e. τ(x) = δx for all x ∈ X.

Proof. (of Proposition 3.6) Put τ(x̄) := δx̄, where δx̄(f) = limn f(ϱo,x̄(n)) for all

f ∈ CΣ(X).

Observe that for any x ∈ X and n ≥ d(o, x) we have that ϱo,x(n) = x, therefore the

de�nition of δ from the de�nition of τ extends the previous de�nition of δ from Section 3

(from X to the whole Xσ), in particular the equality τ(x) = δx holds for all x ∈ X.

Observe that for any x̄ ∈ Xσ the limit limn f(ϱo,x̄(n)) exists, as the convergence of f ◦Σn

to f in the supremum metric implies that the diameters of the sets (f ◦ ϱo,x̄)([n,∞))

converge to 0 when n → ∞, and that δx̄ is a non-zero multiplicative linear functional on

CΣ(X); therefore the map τ is well-de�ned.

The map τ is one-to-one by the following argument. Let x̄ ∈ Xσ. De�ne dx̄(x) :=

do(x̄, x) (the metric do has been introduced in equation (2-1)). The function dx̄ is bounded

(by 1) and continuous on X. Furthermore, for all x ∈ X and n ∈ N we have that

|dx̄(Σn(x))−dx̄(x)| ≤ 2−n+1, as for all i ≤ n we have by consistency of σ that ϱo,Σn(x)(i) =

ϱo,ϱo,x(n)(i) = ϱo,x(i), so the i-th summands for i ≤ n in the de�nitions of do(x̄, x) and

do(x̄,Σn(x)) are the same; this implies that dx̄ ◦ Σn converges to dx̄ in the supremum

metric. To see that dx̄ has bounded variation, take R > 0, x ∈ X and y ∈ B(x,R), and

let N ∈ N be the integer part of d(o, x). By the triangle inequality and Proposition 2.2

we have that

|dx̄(x)− dx̄(y)| ≤
N∑

n=1

2−nd(ϱo,x(n), ϱo,y(n)) +
∞∑

n=N+1

2−n

≤
∞∑
n=1

2Rn

d(o, x)
2−n + 2−N ≤ 4R

d(o, x)
+ 2−d(o,x)+1,

which tends to 0 when d(o, x) tends to ∞. Therefore dx̄ ∈ CΣ(X). By continuity of do,

for any ȳ ∈ Xσ we have that τ(ȳ)(dx̄) = δȳ(dx̄) = do(ȳ, x̄). Therefore, if τ(ȳ) = τ(x̄), then

by an application of both sides to dx̄ we obtain that do(ȳ, x̄) = do(x̄, x̄), which is equal

to 0, so x̄ = ȳ.
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The map τ is onto X
Σ
by the following argument. Assume that there exists a maximal

proper ideal I of CΣ(X) such that I ̸= ker δx̄ for any x̄ ∈ Xσ. Then, because I is closed

under the multiplication by the elements of the (whole) algebra CΣ(X), we can pick a

family of functions {fx̄ : x̄ ∈ Xσ} ⊆ I such that fx̄ is non-negative and δx̄(fx̄) = 1. If

x ∈ X, then there exists rx > 0 such that fx̄ ≥ 1/2 on B(x, rx). If x̄ ∈ ∂σX, then, since

fx̄ ∈ CΣ(X), we can choose tx̄ ∈ N such that for all x ∈ X with d(o, x) ≥ tx̄ we have that

|fx̄(x)− fx̄(Σtx̄(x))| ≤ 1/6 (as fx̄ ◦Σn → fx̄) and |fx̄(x)− fx̄(y)| ≤ 1/6 for all y ∈ X with

d(x, y) ≤ 1 (as fx̄ has bounded variation). Then we have by the triangle inequality that

for all y ∈ Uo(x̄, tx̄, 1) ∩X and n ≥ tx

|fx̄(y)− fx̄(ϱo,x̄(n))| ≤ |fx̄(y)− fx̄(ϱo,y(tx̄))|+ |fx̄(ϱo,y(tx̄))− fx̄(ϱo,x̄(tx̄))|

+ |fx̄(ϱo,x̄(tx̄))− fx̄(ϱo,x̄(n))| ≤ 1/6 + 1/6 + 1/6 = 1/2,

therefore, passing to the limit with n, we obtain that fx̄(y) ≥ 1−1/2 = 1/2. Observe that

the family {Uo(x̄, tx̄, 1) : x̄ ∈ ∂σX} ∪ {B(x, rx) : x ∈ X} is an open cover of Xσ, thus we

can choose a �nite subcover {Uo(x̄i, tx̄i
, 1) : i = 1, . . . ,m1} ∪ {B(xj, rxj

) : j = 1, . . . ,m2}.
Then the function f := fx̄1 + . . . + fx̄m1

+ fx1 + . . . + fxm2
belongs to I and 1/2 ≤ f(x)

for all x ∈ X. Using the fact that∣∣∣∣ 1

f(x)
− 1

f(y)

∣∣∣∣ = |f(x)− f(y)|
|f(x)f(y)|

≤ 4 |f(x)− f(y)|

for all x, y ∈ X, one may verify that the function 1/f belongs to CΣ(X), therefore

1 = (1/f) · f ∈ I and I = CΣ(X). This contradicts properness of I.

Since Xσ is compact and τ is bijective, in order to prove that τ is a homeomophism,

it su�ces to show that it is continuous. Consider any subbase open subset Uf,a,ϵ := {δȳ ∈
X

Σ
: |δȳ(f)− a| < ϵ} of X

Σ
, where f ∈ CΣ(X), a ∈ C and ϵ > 0. Then τ−1(Uf,a,ϵ) = {ȳ ∈

Xσ : |δȳ(f)− a| < ϵ}. Consider a point x̄ ∈ Xσ such that ϵ′ := |δx̄(f)− a| < ϵ. If x̄ ∈ X,

then by continuity of f there exists η > 0 such that

{δy(f) : y ∈ B(x̄, η)} = f(B(x̄, η)) ⊆ BC(δx̄(f), ϵ− ϵ′) ⊆ BC(a, ϵ)

If x̄ ∈ ∂σX, then, as in the proof that τ is onto, by the fact that f ◦ Σn → f and that f

has bounded variation, for large enough t we have that

f(Uo(x̄, t, 1) ∩X) ⊆ BC(δx̄(f), (ϵ− ϵ′)/2) ⊆ BC(a, ϵ
′ + (ϵ− ϵ′)/2),

therefore {δȳ(f) : ȳ ∈ Uo(x̄, t, 1)} ⊆ f(Uo(x̄, t, 1) ∩X) ⊆ BC(a, ϵ).

Now we prove the `moreover' part. Observe that for any g ∈ G and x ∈ X we have

g∗τ(x) = g∗δx = δgx = τ(gx). Since τ is continuous, and the actions of G on Xσ and X
Σ

are via continuous functions, and X is dense in Xσ, we have that g∗τ(x̄) = τ(gx̄) for any

x̄ ∈ Xσ.
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4. Non-uniqueness of boundary

In this section we adapt the classical example by Croke and Kleiner [CK00] to prove the

following theorem on non-uniqueness of the boundary de�ned in Section 2 in the case of

injective groups. (For the de�nition of injective metric space, see the paragraph above

Corollary II.)

Theorem 4.1 (Theorem IV). There exists a group G acting geometrically on two proper

�nite-dimensional injective metric spaces X♢, X2 with convex bicombings σ♢, σ2, respect-

ively, such that ∂σ♢X♢ and ∂σ2X2 are not homeomorphic.

Remark 4.2. As it has been discussed in Remark III and in the proof of Corollary II(i),

a proper injective metric spaceX that is �nite-dimensional � or, more generally, such that

each of its bounded subsets is of �nite dimension � admits a unique convex bicombing,

which is additionally consistent, reversible and equivariant with respect to the full isometry

group Iso(X) of X.

In a CAT(0) space X, each pair of points is connected by a unique geodesic; these

geodesics give the unique bicombing on X, see [BH99, Proposition II.1.1.4(1)]. This

bicombing therefore is automatically consistent, reversible and Iso(X)-equivariant. It is

also convex, see [BH99, Proposition II.2.2.2].

Further in this section, we will use these uniqueness results without mentioning.

We say that two bicombings σ◦, σ• on a complete geodesic metric space X have the

same trajectories if imσ◦
xx′ = imσ•

xx′ for all x, x′ ∈ X.

The strategy of the proof of Theorem 4.1 is as follows. We take a group acting on

two spaces with non-homeomorphic boundaries, described in [CK00] (namely, the group

of deck transformations acting on the universal covers of the spaces in Figure 2) and

replace the original, piecewise-ℓ2 metrics on these spaces with piecewise-ℓ∞ metrics. It

is then su�cient, see Proposition 4.8, to show that the resulting spaces are injective and

equipped with bicombings having the same trajectories as the original CAT(0) ones. It

turns out that these properties may be checked locally, to which end Lemma 4.7 serves.

Lemmas 4.3, 4.4, 4.5 and Proposition 4.6 are some preparatory lemmas useful in the proof

of Lemma 4.7.

We begin with the following simple, yet very useful observation.

Lemma 4.3. Let φ be an isometry of a metric space X that possesses a φ-equivariant

bicombing σ. Then the �xpoint set Fix(φ) of φ is σ-convex.

Proof. For any x, y ∈ Fix(φ) we have that σxy = σφ(x)φ(y) = φ ◦ σxy.
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We add some simple observations to the work of Miesch on gluings of injective metric

spaces. Following [Mie15], we call a subset A of a metric space (X, d) strongly convex

whenever for all x, y ∈ A the metric interval {z ∈ X : d(x, y) = d(x, z) + d(z, y)}
is contained in A, and externally hyperconvex (recall the discussion about names from

around the de�nition of injective metric space, above Corollary II) whenever for every

family of points xi ∈ X and radii ri > 0 that satis�es d(xi, xj) ≤ ri+ rj and d(xi, A) ≤ ri,

the set A ∩
⋂
B(xi, ri) is non-empty. For R2 with the ℓ∞-metric, a standard example

of a strongly convex subset is the diagonal line {(d, d) : d ∈ R}, and of an externally

hyperconvex subset is the horizontal line {(x, 0) : x ∈ R}.
Further in this chapter, by an std-gluing of the spaces (Xλ, dλ)λ∈Λ along a subspace

A we mean the metric space X obtained in the following process. We assume that we

have a family of metric spaces (Xλ, dλ)λ∈Λ, a space (A, dA), and isometric embeddings

ıλ : (A, dA) → (Xλ, dλ) for all λ ∈ Λ, such that ıλ(A) is closed in Xλ. Then X arises as

the image of the gluing map π de�ned as the quotient map of the relation ∼ on
⊔

λ∈ΛXλ

given by ıλ(a) ∼ ıλ′(a) for all λ, λ′ ∈ Λ and a ∈ A, with the standard gluing metric. Note

that the spaces A and Xλ can be isometrically embedded into X using π (and the ıλ),

and therefore we will identify these spaces with their images in X.

In the following lemma, the statements about CAT(0)-ness and about injectivity, see

[Mie15], of the spaces resulting from gluings have been known previously.

Lemma 4.4. Let X be the std-gluing of metric spaces (Xλ, dλ)λ∈Λ along some space A.

In any of the 3 cases below:

1. the spaces Xλ are CAT(0), and A is a closed and convex subset of each of the Xλ;

2. the spaces Xλ are injective, X is proper and �nite-dimensional, and A is externally

hyperconvex (therefore, automatically, closed) in each of the Xλ;

3. the spaces Xλ are injective, X is proper and �nite-dimensional, and A is closed and

strongly convex in each of the Xλ;

the space X is CAT(0) (case 1) or injective (cases 2 and 3), thus admits a convex bicomb-

ing σ; and for all Λ0 ⊆ Λ the space X0 := A ∪
⋃

λ∈Λ0
Xλ is σ-convex, in particular

σ|X0×X0×[0,1] is the convex bicombing on X0.

Proof. For each λ ∈ Λ consider copies X1
λ, X

2
λ, X

3
λ of the space Xλ, and let the space X̃

be the std-gluing of the family {X i
λ : λ ∈ Λ, 1 ≤ i ≤ 3} along A. Note that the space X

is a subspace of X̃, and the latter consists of 3 copies of X std-glued along A. Applying

[BH99, Theorem II.11.3], [Mie15, Theorem 1.3 and Theorem 1.1] to the cases 1, 2 and 3,

respectively, we get that the spaces X0, X, X̃ are all CAT(0), or proper, �nite-dimensional

(see e.g. [Eng78, Theorem 3.1.4 and Proposition 3.1.7]) and injective, thus admit convex
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bicombings; denote by σ̃ the convex bicombing on X̃. Consider the action of the group

Sym({1, 2, 3})Λ with the λ-th coordinate acting by permuting copies Xj
λ of the spaces Xλ.

Observe that X is the set of �xed points of ((1)(2 3))λ∈Λ, therefore by Lemma 4.3 it is

σ̃-convex and σ := σ̃|X×X×[0,1] is the convex bicombing on X. Similarly, one can see that

there exists an element of Sym({1, 2, 3})Λ with �xed point set equal to X0, therefore by

Lemma 4.3 the space X0 is σ̃-convex, thus σ-convex, and σ̃|X0×X0×[0,1] = σ|X0×X0×[0,1] is

the convex bicombing on X0.

Lemma 4.5. Let X be the std-gluing of injective spaces (Xλ, dλ)λ∈Λ along some space A.

(i) Assume that A is externally hyperconvex in each of the Xλ. Then for all subsets

Λ0 ⊆ Λ the set X0 := A ∪
⋃

λ∈Λ0
Xλ is an externally hyperconvex subset of X.

(ii) Let A be closed in each of the Xλ. Suppose B ⊆ Xλ0 for some λ0 ∈ Λ is strongly

convex in Xλ0 and |A ∩B| ≤ 1. Then B is strongly convex in X.

Proof. (i) Let {B(xi, ri)}i∈I be a collection of closed balls in X with d(xi, xj) ≤ ri + rj

and d(xi, X0) ≤ ri. If this collection satis�es d(xi, A) ≤ ri for all i ∈ I, then the claim

follows by the fact that A is externally hyperconvex in X by [Mie15, Theorem 1.3].

Otherwise, there exist i0 ∈ I and λ0 ∈ Λ0 such that B(xi0 , ri0) ⊆ Xλ0 . By [Mie15,

Theorem 1.3], the space X is injective, therefore ∅ ̸=
⋂

λ∈Λ0
B(xi, ri) ⊆ B(xi0 , ri0) ⊆

Xλ0 ⊆ X0. The claim follows.

(ii) Take a geodesic γ in X with endpoints in B. Since A is closed in each of the Xλ,

the set Xλ0 is closed in X, therefore the preimage γ−1(X \Xλ0) is open, thus it is a union

of disjoint open intervals. Replace γ on each of such intervals with a geodesic contained

in Xλ0 , obtaining a new geodesic γ′ with the same endpoints as γ, which is contained in

Xλ0 , and thus in B, by strong convexity. This implies that all of the endpoints of the

intervals where γ went out of Xλ0 are contained in B. Since |A ∩ B| ≤ 1, it follows that

γ = γ′, so γ is contained in B. The claim follows.

We note that the following can be derived from [Mie17], where the proof is more

involved, as the setting is more general.

Proposition 4.6. Let X be a metric space that admits a ccc bicombing σ. Assume that

c : [0, 1] → X is a constant speed geodesic such that locally it is a σ-geodesic, i.e. there

exists an open cover U of [0, 1] such that imσc(s)c(t) = im c|[s,t] for all U ∈ U and s, t ∈ U

satisfying s ≤ t. Then c is the σ-geodesic σc(0)c(1).

Proof. Consider the following statement S(l), where l ∈ [0, 1]: for all s, t ∈ [0, 1] such

that s ≤ t and t− s ≤ l the equality imσc(s)c(t) = im c|[s,t] holds. By compactness of [0, 1],
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the statement S(ϵ) holds for a su�ciently small ϵ > 0. It is su�cient to show that for any

l ∈ [0, 1] the statement S(2l/3) implies S(l). Take any s, t ∈ [0, 1] such that s ≤ t and

t−s ≤ l. Let p := c((2s+t)/3), q := c((s+2t)/3) and p′ := σc(s)c(t)(1/3), q′ := σc(s)c(t)(2/3).

By conicality and S(2l/3), we have d(p, p′) ≤ d(q, q′)/2. Similarly, d(q, q′) ≤ d(p, p′)/2.

Therefore d(p, p′) = 0 = d(q, q′), and, by consistency of σ, imσc(s)c(t) = im c|[s,t].

For a space X obtained by gluing up to 3 copies Pj := {(x, y)Pj : x, y ∈ R} of R2,

where j = 1, 2, 3, we denote by X∞ (resp. X2) the space X equipped with the metric

arising from putting the ℓ∞-metric (resp. the ℓ2-metric) on each of the Pj.

The main technical lemma we use to adapt the Croke�Kleiner example is as follows.

Lemma 4.7. Let X be one of the following spaces:

1. R2,

2. P1 ⊔ P2

/
{(x, 0)P1 = (x, 0)P2 : x ∈ R},

3. P1 ⊔ P2

/
{(d, d)P1 = (d, d)P2 : d ∈ R},

4. P1 ⊔ P2 ⊔ P3

/
{(x, 0)P1 = (x, 0)P2 : x ∈ R} ∪ {(0, y)P2 = (0, y)P3 : y ∈ R},

5. P1 ⊔ P2 ⊔ P3

/
{(x, 0)P1 = (x, 0)P2 : x ∈ R} ∪ {(d, d)P2 = (d, d)P3 : d ∈ R}.

Then X2 is CAT(0), X∞ is injective, and the convex bicombings σ2 of X2 and σ∞ of X∞

have the same trajectories.

Proof. The space X2 is CAT(0) in each of the cases by [BH99, Remark II.11.2.2].

Let X be as in 1. It is well-known that the space X∞ is injective. Both σ∞ and σ2

consist of linear segments � one can refer to [DL15, Theorem 3.3].

Let X be as in 2. The resulting space X∞ is injective by Lemma 4.4, as {(x, 0) : x ∈ R}
is an externally hyperconvex subset of R2 with the ℓ∞-metric. Furthermore, for any

p ∈ {2,∞} the space Xp restricted to the union of any pair of the 4 closed halfplanes

induced in P1 and P2 by the x-axis (i.e. {(x, y)Pj : yR0, x ∈ R}, where R ∈ {≤,≥} and

j = 1, 2) is isometric to R2 with the ℓp-metric; therefore, by Lemma 4.4 and case 1, we

obtain that σ2 = σ∞.

Let X be as in 3. The argument is analogous to the one in 2, with the di�erence that

the space X∞ is injective as the set {(d, d) : d ∈ R} is strongly convex in R2 with the

ℓ∞-metric.

LetX be as in 4. The spaceX may be seen as the std-gluing of the spacesX1,2 andX2,3

along P2, where the space X1,2 is the std-gluing of P1 with P2 along the x-axis and X2,3

is the std-gluing of P2 with P3 along the y-axis. The set P2 is externally hyperconvex in

both X∞
1,2 and X

∞
2,3 by Lemma 4.5(i); therefore, by Lemma 4.4, the space X∞ is injective,
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O O O

P1 P2 P3

Figure 1: Paths, whose intersections with P1 ∪ P2 and P2 ∪ P3 are linear segments,

originating in some point a ∈ P1 \ (P2 ∪ P3) and omitting O (the red ones are these that

reach P3).

and the subsets P1 ∪ P2 and P2 ∪ P3 are both σ∞-convex and σ2-convex in X. Therefore,

since case 2 applies to both X1,2 and X2,3, it remains to show that for all a ∈ P1 \(P2∪P3)

and b ∈ P3 \ (P1 ∪ P2) we have imσ∞
ab = imσ2

ab. Let O := (0, 0)P1(= (0, 0)P2 = (0, 0)P3)

and σ ∈ {σ∞, σ2}. By case 2 (applied to X1,2 and to X2,3), the sets imσab∩ (P1∪P2) and

imσab ∩ (P2 ∪ P3) are linear segments (when considered as subsets of appropriate planes

in X1,2 or X2,3, see Figure 1). If there exists a path ϖ from a to b such that ϖ omits O,

and imϖ∩ (P1 ∪P2) and imϖ∩ (P2 ∪P3) are linear segments, then, after an appropriate

reparametrisation, ϖ is locally a σ-geodesic, therefore by Proposition 4.6 is the σ-geodesic

σab. If there is no such path from a to b, then the image imσab contains O, and therefore

is equal to the chain of segments with vertices a, O, b. The case follows.

Let X be as in 5. By Lemma 4.5(ii), the subset {(d, d)P2 : d ∈ R} is strongly convex in

the std-gluing of P1 with P2 along the x-axis; therefore, by Lemma 4.4, the space X∞ is

injective, and the subset P1 ∪P2 is σ2-convex and σ∞-convex in X. The subset P2 ∪P3 is

σ2-convex and σ∞-convex inX as a consequence of Lemma 4.3 applied to the mapX → X

�xing P2 ∪ P3 pointwise and re�ecting P1 with respect to its x-axis. The remaining part

of the argument is analogous to the one in 4. (Side note: despite the similarities in the

proofs, the analogue of Figure 1 for case 5 is substantially di�erent from Figure 1, e.g. it

is not just a sheared version of it.)

Proposition 4.8. Let d◦ and d• be two complete metrics on a topological space X,

and assume that for i ∈ {◦, •} the space (X, di) admits a ccc bicombing σi. Assume that

σ◦ and σ• have the same trajectories. Then the identity idX continuously extends to a

homeomorphism ι : Xσ◦ → Xσ•.

38

38:72095



Proof. Consider a σ◦-ray ξ◦. Let l•(t) := d•(ξ◦(0), ξ◦(t)). Since the bicombings σ◦

and σ• have the same trajectories, the function l•(t) is increasing. We show that l•(t)

is unbounded. If it was bounded, then it would have some limit. Therefore, (ξ◦(n))n∈N
would be a Cauchy sequence in (X, d•), so by completeness of the metric d• on the space

X, it would have a limit in X. On the other hand, {ξ◦(n) : n ∈ N} is a discrete set in

(X, d◦), therefore the sequence (ξ◦(n))n∈N is not convergent in X � a contradiction. Note

that the argumentation contained in the previous part of this paragraph works with ◦
and • swapped.

Fix a basepoint o ∈ X. Let the map ι : Xσ◦ → Xσ• be induced by the map that is

the identity on X and assigns to the σ◦-ray ϱ◦o,x̄ the σ
•-ray originating in o with the same

image as ϱ◦o,x̄. By the previous paragraph, the map ι is well-de�ned and restricts to a

bijection from the boundary ∂σ◦X to the boundary ∂σ•X.

Now we show continuity of ι. Clearly, ι is continuous at every point of X, as X is an

open subset of Xσ◦ and ι restricted to X is the identity. Consider any x̄ ∈ ∂σ◦X and

t•, ϵ• > 0. Let t◦ := d◦(ϱ
•
o,ι(x̄)(t•)) (so that, in particular, ϱ•o,ι(x̄)(t•) = ϱ◦o,x̄(t◦)). Since the

maps Xσ◦ ∋ ȳ 7→ ϱ◦o,ȳ(t◦) ∈ X and X ∋ y 7→ d•(y, ϱ
◦
o,x̄(t◦)) ∈ R are continuous, the set

U := {ȳ ∈ Xσ◦ : d•(ϱ
◦
o,ȳ(t◦), ϱ

◦
o,x̄(t◦)) < ϵ•} is an open neighbourhood of x̄ in Xσ◦ . Then,

for any ȳ ∈ U , by Proposition 2.2 applied for the metric d• and bicombing σ• to the points

ϱ•o,ι(x̄)(t•)(= ϱ◦o,x̄(t◦)) and ϱ
◦
o,ȳ(t◦), and radius t•, we obtain that d•(ϱ•o,ι(x̄)(t•), ϱ

•
o,ι(ȳ)(t•)) ≤

2d•(ϱ
◦
o,x̄(t◦), ϱ

◦
o,ȳ(t◦)) < 2ϵ•. Similarly, the inverse ι−1 is continuous as well.

Now we are ready to prove the main theorem of this section.

Proof. (of Theorem 4.1 (Thm. IV)) Consider the complexes C90 and C45, each

C
90

C
45

Figure 2: The tori glued to form complexes C90 and C45, placed on the plane. The

grey lines represent the Z×Z�grid in R×R.

consisting of appropriately glued three tori, as described on Figure 2. Let Xα,p for α ∈
{45, 90} and p ∈ {2,∞} be the universal cover of Cα with the metric being the extension

of the local metric from Cα in the case when the underlying planes are endowed with

the ℓp-metric. The fundamental group G := π1(C
90)(= π1(C

45)) acts geometrically on

each of these four spaces. Since each point in each of the spaces Xα,∞ (resp. Xα,2) for
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α ∈ {90, 45} has a neighbourhood homeomorphic to some open ball in some of the 5 spaces

considered in Lemma 4.7, the spaces Xα,∞ (resp. Xα,2) are locally injective (resp. locally

CAT(0)), thus by [Mie17, Theorem 1.2] (resp. by the Cartan�Hadamard Theorem for

CAT(0) spaces, [BH99, Theorem II.4.1(2)]) they are injective (resp. CAT(0)); let σα,∞

(resp. σα,2) be their convex bicombings. The classical result [CK00] gives that ∂σ90,2X90,2

and ∂σ45,2X45,2 are not homeomorphic. In order to �nish the proof, we show that for each

α ∈ {90, 45} we have that ∂σα,∞Xα,∞ ∼= ∂σα,2Xα,2. In view of Proposition 4.8, it su�ces to

show that imσα,∞
ab = imσα,2

ab for all a, b ∈ Xα := Xα,∞(= Xα,2). First, we check it locally.

Observe that for each x ∈ Xα the space Xα may be identi�ed locally around point x with

some (subset of a) spaceM considered in Lemma 4.7 in such a way that for any p ∈ {2,∞}
there exists rp > 0 such that this identi�cation gives an isometric identi�cation of the ball

B(x, rp) in Xα,p with the ball B(x, rp) in Mp. By conicality, for any p ∈ {2,∞} the ball

B(x, rp) is convex with respect to the ccc bicombings on Xα,p and Mp, therefore the ccc

bicombings from these spaces restrict to ccc bicombings on B(x, rp); they must restrict

to the same bicombing, as the balls in injective and CAT(0) spaces are injective and

CAT(0), respectively, which implies that the ccc bicombing on the ball B(x, rp) in Xα,p is

unique. Therefore, Lemma 4.7 implies that for any a, b ∈ BXα,∞(x, r∞) ∩ BXα,2(x, r2) we

have that imσα,2
ab = imσα,∞

ab . In the general case, by the above, the image of a (global)

σα,∞-geodesic σα,∞
ab is the image of some local CAT(0)-geodesic, which is also the unique

global CAT(0)-geodesic σα,2
ab by [BH99, Proposition II.1.1.4(1, 2)] (or Proposition 4.6).

Remark 4.9. (i) One may construct complexes as on Figure 2 parametrised by the

ℓ2-angle α ∈ (0, π/2] between the black and red segment (see [CK00, Section 1.3]).

Wilson [Wil05] improved the result of Croke and Kleiner by showing that for each

pair of di�erent angles α, β ∈ (0, π/2] the resulting boundaries (of the universal cover

with the locally ℓ2 path metric) are not homeomorphic, thus the fundamental group

of (all) these complexes admits 2ℵ0 pairwise non-homeomorphic CAT(0)-boundaries.

However, the only pair of lines in a pair of ℓ∞-planes, along which they can be

glued to obtain an injective metric space, are two diagonal ones, or two horizontal-

or-vertical ones � one may use the argument in [Mie15, Section 5] almost verbatim.

Since injective metric spaces are locally injective, this prevents us from using Wilson's

approach directly.

(ii) Since the construction of the spaces X45,∞ and X90,∞ consist in gluing injective planes

along horizontal, vertical and diagonal lines, one may obtain graphs Γα for α ∈
{45, 90} by replacing each injective plane in the construction of Xα,∞ with a graph

on Z2 with vertices (x1, y1), (x2, y2) ∈ Z2 connected by an edge i� |x1−y1|, |x2−y2| ≤ 1

(by the graph Γα we mean the metric space with its underlying set consisting of just
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the vertices, with the edges used only to induce the path metric making the ends of

each edge at distance 1 from each other) to prove an analogue of Theorem 4.1 for Helly

groups. However, the graph Γ45 is not Helly. To see this, consider a pair of planes Pi =

{(x, y)Pi : x, y ∈ R} for i = 1, 2 that are glued along their diagonals {(d, d)Pi : d ∈ R}
in the construction of X45,∞ (so that (d, d)P1 = (d, d)P2 for all d ∈ R). Consider the
unit balls in Γ45 centred at points a1 = (−1, 0)P1 , a2 = (1, 2)P1 and a3 = (1, 0)P2 . They

clearly intersect pairwise, however their intersection is empty. To see this, observe

that the diagonal D = {(d, d)P1 : d ∈ R} disconnects Γ45 so that a1 and a3 are in

di�erent connected components of Γ45 \D. Therefore BΓ45(a1, 1) ∩ BΓ45(a3, 1) ⊆ D,

consequently BΓ45(a1, 1) ∩BΓ45(a3, 1) = {(0, 0)P1}, but (0, 0)P1 ̸∈ BΓ45(a2, 1).

5. Products and CAT(0) cube complexes with injective

metrics

Let X be a cube complex. We denote by dXp for p ∈ [1,∞] the gluing metric on X arising

from endowing each cube C of X with the ℓp-metric from the unit cube [0, 1]dimC .

Remark 5.1. That dXp is indeed a metric, not just a pseudometric, is a consequence

(cf. [BH99, Corollary I.7.10]) of the following observation: for each point x of a cube

complex X there exists ϵx > 0 such that for each cube C of X that contains x the

dCp -distance (note that we do not restrict here dXp from X to C) from x to the faces of C

that do not contain x is at least ϵx. Indeed, let C(x) be the cube of X that contains x in

its interior. If x is not a vertex of X, let ϵx > 0 be the distance in (C(x), d
C(x)
p ) from x to

the faces of C(x), otherwise put ϵx := 1. Since every cube C containing x is a product of

C(x) with another cube, the observation follows.

In this section we build on the ideas introduced in Section 4 to prove the following

theorem.

Theorem 5.2. Let X be a locally �nite CAT(0) cube complex of dimension at most 2.

Let σp be the convex bicombing on (X, dp) for p ∈ {2,∞}. Then σ2 and σ∞ have the same

trajectories.

Remark 5.3. Below we justify correctness ((i) and (iii)) and further discuss ((ii) and

(iii)) the above statement using results from literature.

Let X be a cube complex.

(i) If (X, dX2 ) is locally �nite and CAT(0), then (X, dX∞) is injective. In the setting when

X is a �nite complex, one may refer to [Mie14, Theorems 1.4 and 1.3], or follow a
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CAT(0) cube complexes�median cube complexes�collapsible polyhedra�injective met-

ric spaces route, see [Che00; vdV98; MT83]. The case when X is locally �nite may

be then justi�ed as follows: for each point x of the complex X consider the smallest

subcomplex Xx of X that contains all of the cubes of X that contain x; the complex

(Xx, d
Xx
2 ) is CAT(0) (this fact is discussed in detail in Remark 5.7) and �nite (as X is

locally �nite); therefore (Xx, d
Xx
∞ ) is injective; since the inclusion (Xx, d

Xx
∞ ) ↪→ (X, dX∞)

is an isometry on a neighbourhood of x (recall the observation from Remark 5.1), the

space (X, dX∞) is locally injective; the space X is also contractible, therefore (X, dX∞)

is injective by [Mie17, Theorem 1.2].

(ii) Injectivity of (X, d∞) implies CAT(0)-ness of (X, d2) � see [Mie14, Theorem 1.2],

which uses the Link Condition, [Gro87, the 4.2.C that follows 4.2.D].

(iii) The discussion regarding uniqueness of bicombings described in Remark 4.2 applies

to (X, d2) if it is CAT(0), and to (X, d∞) if it is injective and locally �nite. As

in Section 4, further in this section we usually use these uniqueness results without

mentioning.

In view of Proposition 4.8, we have the following corollary.

Corollary 5.4 (Theorem V). Let X be a locally �nite CAT(0) cube complex of di-

mension at most 2. Let σp be the convex bicombing on (X, dp) for p ∈ {2,∞}. Then

the identity of X extends to a homeomorphism between Xσ2 and Xσ∞, in particular the

boundaries ∂σ2X and ∂σ∞X are homeomorphic.

We begin the preparations for the proof of Theorem 5.2 with some general de�nitions

and observations.

Let (X, dX) and (Y, dY ) be metric spaces. By the ℓp-product X ×p Y we mean the

Cartesian product X × Y endowed with the metric

dX×pY ((x1, y1), (x2, y2)) =
∥∥(dX(x1, x2), dY (y1, y2))∥∥p

.

If the spaces X, Y admit bicombings σX, σY, respectively, then the product bicombing

σX⊗ σY is de�ned to be the map

(X × Y )× (X × Y )× [0, 1] ∋
(
(x1, y1), (x2, y2), t

)
7−→

(
σX
x1,x2

(t), σY
y1,y2

(t)
)
∈ X × Y.

Remark 5.5. Let (X, dX) and (Y, dY ) be metric spaces that admit bicombings σX and

σY , respectively. Then, the product bicombing σX ⊗ σY is consistent, conical, convex,

and reversible i� both of the bicombings σX and σY are consistent, conical, convex,

and reversible, respectively. The =⇒ implication follows as the spaces X and Y embed

into X ×p Y as sections, to which the product bicombing σX⊗ σY restricts as σX and
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σY , respectively. Regarding the ⇐= implication, the claim regarding consistency and

reversibility follows directly; the claim regarding conicality and convexity follows from a

direct calculation involving the Minkowski's inequality.

Lemma 5.6. Let {(Xi, di) : i ∈ I} be a family of metric spaces that are glued together

to form a (metric) space (X, dX), where dX is the gluing metric, and denote the gluing

map π :
⊔

i∈I Xi → X. Let Y be a geodesic metric space and p ∈ [1,∞]. Then gluing and

taking the ℓp-product commute, namely: the gluing metric dgl on X × Y arising from the

gluing map π × idY :
⊔

i∈I(Xi × Y, dXi×pY ) → X × Y is the same as the ℓp-metric dX×pY

on X × Y .

Proof. Let x, x′ ∈ X and y, y′ ∈ Y . Consider an ((x, y), (x′, y′))�gluing path P =

((x, y) = (x0, y0), . . . , (xn, yn) = (x′, y′)) in X × Y and ij ∈ I for j = 1, . . . , n, such that

xj−1, xj ∈ Xij . Then P induces an (x, x′)�gluing path PX = (x0, . . . , xn) in X. The length

len(P ) satis�es

len(P ) =
n∑

j=1

∥∥(dXij
(xj−1, xj), dY (yj−1, yj)

)∥∥
p

≥
∥∥( n∑

j=1

dXij
(xj−1, xj),

n∑
j=1

dY (yj−1, yj)
)∥∥

p

=
∥∥(len(PX),

n∑
j=1

dY (yj−1, yj))
)∥∥

p
≥

∥∥(dX(x0, xn), dY (y0, yn))∥∥p
,

therefore dgl((x, y), (x′, y′)) ≥ dX×pY ((x, y), (x
′, y′)).

For the other inequality, let PX = (x = x0, . . . , xn = x′) be an (x, x′)�gluing path

of non-zero length in X such that for every 1 ≤ j ≤ n the elements xj−1, xj belong

to Xij for some ij ∈ I. Given any y, y′ ∈ Y , choose a sequence of points PY = (y =

y0, y1, . . . , yn = y′) in Y such that dY (yj−1, yj) = dXij
(xj−1, xj) · dY (y, y′)/len(PX) for

1 ≤ j ≤ n. Then P = ((x0, y0), . . . , (xn, yn)) is an ((x, y), (x′, y′))�gluing path in X × Y

that satis�es len(P ) = ∥(len(PX), dY (y, y
′))∥p, and the other inequality follows.

Below we present and discuss several de�nitions concerning local fragments of a cube

complex.

Let X be a cube complex. For any cube C of X we denote by XC the smallest

subcomplex of X containing all of the cubes of X that contain C. In further text,

we usually consider XC with the metrics dXC
2 and dXC

∞ (discarding the cubes of X not

belonging to XC � in particular we do not restrict the metric from X to XC). We de�ne

C⊥ to be any of the (identical) subcomplexes of XC such that XC is the product C×C⊥.
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Remark 5.7. If C is a cube of a CAT(0) cube complex (X, dX2 ), then the above-de�ned

cube complex (XC , d
XC
2 ) is also CAT(0): since XC is contractible, it is su�cient to check

that it satis�es the Link Condition. Let c be any vertex of C. For each vertex v of XC

there exists the smallest cube Cv containing C and v; denote by ∆v the set of neighbours

of c (in the 1-skeleton of X) that belong to Cv. Consider a vertex a of XC and neighbours

v1, . . . , vn of a in XC such that for all 1 ≤ i < j ≤ n the vertices vi, vj span an edge in

the link of a in XC , i.e. there exists a cube Cij in X containing a, vi, vj and C. Then the

cube Cij must contain Ca, Cvi and Cvj , hence each pair of vertices from ∆a ∪∆vi ∪∆vj

is connected by an edge in the link of c. Therefore, every pair of vertices of the set

∆a ∪
⋃
{∆vi : 1 ≤ i ≤ n} spans an edge in the link of c, and by the Link Condition for c

in X, there exists a cube in X that contains a, C and all of the vi, as required.

Given a point x ∈ X, let C(x) be the cube in X that contains x in its interior (we use

the convention that the interior of a 0-cube is the 0-cube itself). We then use the shorter

notation Xx for XC(x) and say that the point x is of type (dimXx − dimC(x), dimC(x)).

(Note that the �rst coordinate of type is equal to dimC(x)⊥. The type with the lexico-

graphic order may be considered to be a measure of complexity of a local neighbourhood

of x in the cube complex X.)

We say that a locally �nite CAT(0) cube complex X has the property Traj if the convex

dX2 -bicombing σ
2 on X and the convex dX∞-bicombing σ∞ on X have the same trajectories,

i.e. imσ2
xx′ = imσ∞

xx′ for all x, x′ ∈ X; and say that X has the property Par if furthermore

the parametrisations agree, i.e. the bicombings σ2 and σ∞ are equal.

The main technical lemma used in the proof of Theorem 5.2 to carry an induction over

the type is as follows.

Lemma 5.8. Let X be a locally �nite CAT(0) cube complex and x ∈ X.

(i) If x is of type (0, 0), (0, 1) or (1, 0), i.e. dimXx ≤ 1, then Xx satis�es Par.

(ii) If C(x)⊥ satis�es Par, then Xx also satis�es Par.

(iii) If x is of type (n, 0), i.e. x is a vertex and dimXx = n, for some n > 0, and for all

x◦ ̸= x belonging to the interior of a cube containing x the cube complex Xx◦ satis�es

Traj, then Xx also satis�es Traj.

Proof. (i) Type (0, 0). In this case Xx is a single point. The claim follows.

Type (0, 1). In this caseXx is a unit interval I, on which the ℓ2-metric dI2 coincides with

the ℓ∞-metric dI∞, therefore the convex dI2-bicombing on I and the convex dI∞-bicombing

on I are equal.
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Type (1, 0). In this case the complex Xx consists of several copies of the unit interval I

glued in the common vertex x. Since dI2 = dI∞, also the equality dXx
2 = dXx

∞ holds, therefore

the convex dXx
2 -bicombing on Xx and the convex dXx

∞ -bicombing on Xx are equal.

(ii) By Lemma 5.6 the complex (Xx, d
Xx
p ) is the ℓp-product of (C(x)⊥, dC(x)⊥

p ) with

the dimC(x)�fold ℓp-product of the unit interval (I, dIp). By the assumption and (i), the

complex C(x)⊥ and the interval I, respectively, satisfy Par. For p ∈ {2,∞}, denote by

σp,⊥ the convex dC(x)⊥
p -bicombing on C(x)⊥, and by σI the bicombing on the unit interval.

We then have the equality σ2,⊥ ⊗ (σI)⊗ dimC(x) = σ∞,⊥ ⊗ (σI)⊗ dimC(x). The bicombing

σp,⊥ ⊗ (σI)⊗ dimC(x) is the convex dXx
p -bicombing on Xx, see Remark 5.5, which �nishes

the proof.

(iii) For p ∈ {2,∞}, denote by σp the convex dXx
p -bicombing on Xx. Observe that for

any point x◦ ̸= x belonging to the interior of a cube incident to x, the complex Xx◦ is the

subcomplex (Xx)x◦ of Xx. Consider x′ ∈ Xx\{x} and let x′◦ be any point from the interior

of the smallest cube containing both x and x′. Since some open neighbourhood of x′ in

Xx is contained in Xx′
◦ , and the inclusion (Xx′

◦ , dp
Xx′

◦) ↪→ (Xx, d
Xx
p ) is an isometry on a

neighbourhood of x′ (recall Remark 5.1), and for all metrics d the d-balls are convex with

respect to conical d-bicombings (here we consider d = dXx
p and d = dp

Xx′
◦), by uniqueness

of bicombings (see Remark 5.3(iii)) there exists an open neighbourhood Ux′ of x′ in Xx

such that imσ2
ab = imσ∞

ab for all a, b ∈ Ux′ .

Now consider any a, b ∈ Xx. We shall prove that σ2
ab = σ∞

ab . The case of a = x = b

is clear. Next, we consider the case when a ̸= x = b. Let a◦ belong to the interior of

the smallest cube that contains both a and x. Let γ be the (straight-line) geodesic from

the convex dC(a◦)
2 -bicombing on C(a◦) that begins in a and ends in x. Since the inclusion

(C(a◦), d
C(a◦)
2 ) ↪→ (Xx, d

Xx
2 ) is a local isometry on the interior of the cube C(a◦) (recall

Remark 5.1), the restrictions γ|[s,t] are local σ2-geodesics for 0 < s ≤ t < 1 (recall that

CAT(0)-geodesics are unique). Therefore, by considering the neighbourhoods Ux′ , one

obtains that for all 0 < s ≤ t < 1 the image im γ|[s,t] is the image of a local σ∞-geodesic;

then, by Proposition 4.6, we have that these local σp-geodesics are (global) σp-geodesics,

hence imσ2
γ(s),γ(t) = im γ|[s,t] = imσ∞

γ(s),γ(t); �nally, passing to the limits s → 0 and

t → 1, we obtain that imσ2
ax = im γ = imσ∞

ax, as required. Likewise follows the case

when a = x ̸= b. In the case when a ̸= x ̸= b, we consider two subcases. If for some

p ∈ {2,∞} there exists a local σp-geodesic γ from a to b in Xx that omits x, then, by

considering the neighbourhoods Ux′ , one obtains that the image im γ is both the image

of a local σ2-geodesic and the image of a local σ∞-geodesic, therefore by Proposition 4.6

imσ2
ab = im γ = imσ∞

ab . Otherwise, for both choices of p ∈ {2,∞} the σp-geodesic σp
ab

passes through x and must be the concatenation of the geodesics σp
ax and σp

xb; the image
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of each of these geodesics does not depend on p, as it was discussed in the case when

a ̸= x = b.

Remark 5.9. Denote by F the space consisting of a 1-cube I glued with a 2-cube

in a vertex: . Observe that, even though I and satisfy Par, the lengths of the

same bicombing-geodesic in ( , d2) and ( , d∞) almost always di�er, which leads to the

following.

(i) By considering the space F , one obtains that the (Par⇒ Par)-version of Lemma 5.8(iii)

does not hold.

(ii) By considering the product of F with the unit interval, one obtains that the (Traj ⇒
Traj)-version of Lemma 5.8(ii) does not hold.

Now we are ready to prove the main theorem of this section.

Proof. (of Theorem 5.2) Denote by Traj(n,m) the property that for every CAT(0)

cube complex Y and every point y ∈ Y of type (n,m) the complex Yy satis�es Traj; likewise

for Par. Lemma 5.8(i) states that Par(0, 0), Par(0, 1) and Par(1, 0) hold. Next, observe

that for any element y of a cube complex Y , upon denoting by y⊥ the only element of the

intersection C(y)∩C(y)⊥ (which is a single vertex), the equality C(y)⊥ = (C(y)⊥)y⊥ holds

(any cube C↓ in C(y)⊥ is the intersection C ∩ C(y)⊥ for some cube C of Y containing y;

then the cube C also contains C(y), to which y⊥ belongs; hence y⊥ belongs to C∩C(y)⊥ =

C↓); and, upon denoting by (n,m) the type of y in Y , the type of y⊥ in the complex C(y)⊥

is (dim(C(y)⊥)y − 0, 0) = (dimC(y)⊥, 0) = (dimYy − dimC(y), 0) = (n, 0). Therefore,

by Lemma 5.8(ii), Par(0, 2) and Par(1, 1) follow from Par(0, 0) and Par(1, 0), respectively.

Finally, it follows from Lemma 5.8(iii) that Traj(2, 0) holds, as for a 2-dimensional cube

complex Y and y ∈ Y , for all y◦ ̸= y belonging to the interior of a cube C(y◦) in Y

containing y one has that the type (n,m) of y◦ ∈ Y satis�es n+m = dimYy◦ ≤ dimY = 2

and m = dimC(y◦) > 0.

Then, as the type (n,m) of each element of X satis�es n +m ≤ dimX ≤ 2, and for

p ∈ {2,∞} the dp-balls are σp-convex, and for x ∈ X the inclusion (Xx, d
Xx
p ) ↪→ (X, dXp )

is a local isometry on a neighbourhood of x (recall Remark 5.1), we have a family of

open subsets {Ux ⊆ X : x ∈ X} such that imσ2
ab = imσ∞

ab for all x ∈ X and a, b ∈ Ux.

Therefore by Proposition 4.6 the bicombings σp have the same trajectories.

Remark 5.10. (i) The product of the space F from Remark 5.9 with the unit interval

is an example of a �nite CAT(0) cube complex of dimension 3 for which the conclusion

of Theorem 5.2 does not hold. Furthermore, its underlying idea can be used in the

following construction of a locally �nite CAT(0) cube complex P of dimension 3 such
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that the identity map (P, d2) → (P, d∞) does not extend continuously to a map

between compacti�cations (which is the �rst conclusion of the Corollary 5.4). Let

x1, x2, x3, . . . be such that x1 = 1, xn ∈ {1,
√
2}, and the sequence (

∑n
i=1 xi)/n is not

convergent. Consider cubes C1, C2, C3, . . . such that Cn is a 1-cube i� xn = 1, and

Cn is a 2-cube i� xn =
√
2. Let N be the cube complex similar to ,

obtained from the sequence of cubes (Cn) � more precisely, we denote by N the

result of gluing the cubes Cn in such a way that the cubes Ci and Cj are glued to

each other i� |i− j| = 1, every gluing is a gluing along a single vertex, and if Cn is a

2-cube, then the two vertices participating in the gluing are on the opposite sides of

a diagonal Dn of Cn. Denote by L the half-line in N obtained by taking the union of

all of the cubes Cn that are 1-cubes with all of the diagonals Dn (of these of the Cn

that are 2-cubes). Let P be the cube complex resulting from taking the product of

N with the R-line R subdivided into unit intervals.

By applying Lemma 4.3 to the symmetry along the half-plane H := L × R, one

obtains that that H is σ2-convex and σ∞-convex in P . For p ∈ {2,∞}, the half-line
(L, dNp |L×L) may be isometrically identi�ed with the half-line [0,∞) (with the usual

metric), giving rise to an isometric identi�cation of the half-plane (H, dHp ) with the

ℓp-product [0,∞)×pR (recall Lemma 5.6); below we use this identi�cation by writing

(x, y) ∈ (H, dHp ) for x ≥ 0 and y ∈ R. Upon these identi�cations, the identity of

H sends the point (
∑n

i=1 xi, y) ∈ (H, dH2 ) to (n, y) ∈ (H, dH∞), where n ∈ N and

y ∈ R. Let a ∈ (−1/
√
2, 1/

√
2) \ {0}. The map [0,∞) ∋ t 7→ (t, at) ∈ (H, dH2 ) is a

σ2-ray in H (thus, in P ), and the points (
∑n

i=1 xi, a ·
∑n

i=1 xi) ∈ (H, dH2 ) for n ∈ N
are mapped by the identity to the points (n, a ·

∑n
i=1 xi) ∈ (H, dH∞); the σ∞-geodesic

from (0, 0) ∈ (H, dH∞) to the point (n, a ·
∑n

i=1 xi) ∈ (H, dH∞) passes through the point

(1, a · (
∑n

i=1 xi)/n) ∈ (H, dH∞). Since |a| ∈ (0,
√
2), we have that |a · (

∑n
i=1 xi)/n| ≤

|a|
√
2 ≤ 1, so this point is at dH∞-distance 1 from (0, 0). By the assumption on the

sequence (xn), the sequence (1, a · (
∑n

i=1 xi)/n) is not convergent, therefore (n, a ·∑n
i=1 xi) ∈ (H, dH∞) is also not a convergent sequence in the compacti�cation P σ∞ ,

while it is convergent in the compacti�cation P σ2 .

We do not know if the `in particular' part of Corollary 5.4 may not hold for a

locally �nite CAT(0) cube complex. (In the above example, both of the boundaries

∂σ2P and ∂σ∞P are homeomorphic to an interval, as may be seen using Lemma 5.6,

the fact that each ray in N is contained in L, and Proposition 5.11 below.)

(ii) The local-to-global approach from the above proof of Theorem 5.2 works not only

for (locally �nite CAT(0)) cube complexes of dimension at most 2, however such

extensions would lead to making the statement of Theorem 5.2 more technical. For
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instance, in the induction in the `local' part of this proof, instead of considering

only the very general Traj(n,m) and Par(n,m) properties (note that we have, in fact,

proved Par(0,m) and Par(1,m) for arbitrary m, and Traj(2, 0)), one may start with

a particular cube complex X, consider which subcomplexes of X are needed to carry

the induction, and prove Traj or Par only for these � this approach works e.g. if the

complex X has no elements of type (n,m) with n ≥ 2 and m ≥ 1.

In the course of this section we have made enough preparations to state the following

proposition.

Proposition 5.11. Let p ∈ [1,∞], and assume that proper metric spaces (X, dX) and

(Y, dY ) admit ccc bicombings σX and σY , respectively. Then the boundary ∂σX⊗σYX ×p Y

is homeomorphic to the join ∂σXX ∗ ∂σY Y of ∂σXX and ∂σY Y .

Proof. First, assume that the space Y is compact; then ∂σY Y = ∅, and we need to

show that the boundary ∂σX⊗σYX ×p Y is homeomorphic to ∂σXX. Pick a basepoint

o = (oX , oY ) ∈ X × Y . By the de�nition of the product bicombing, the set X × {oY }
is (σX ⊗ σY )-convex in X × Y , hence the map sending a σX-ray ξX based in oX to

the (σX ⊗ σY )-ray t 7→ (ξX(t), oY ) induces a homeomorphic embedding of ∂σXX into

∂σX⊗σYX×p Y . We show that it is onto by showing that every (σX⊗σY )-ray γ based in o

has its image contained in X × {oY }. Since Y is compact, there exists a constant D > 0

such that Y ⊆ BY (oY , D). Then, for each n ∈ N there exist an ∈ X × {oY } such that

dX×pY (an, γ(n)) < D. Proposition 2.2 then implies that for all n ≥ r > 0 we have that

dX×pY (X × {oY }, γ(r)) ≤ dX×pY (ϱo,an(r), γ(r)) ≤ 2D · r/n,

which tends to 0 as n→ ∞; therefore γ(r) ∈ X × {oY }, and im γ ⊆ X × {oY }. Likewise
follows the case when X is compact.

Now we proceed to the main case. Assume that X are Y are non-compact. Then, as

the spaces X and Y are proper, the compacti�cations XσX and YσY are compact, and the

boundaries ∂σXX and ∂σY Y are non-empty. Let Γ:= {(a, b) ∈ R2 : a, b ≥ 0, ∥(a, b)∥p = 1}.
Consider the map q given by

∂σXX × ∂σY Y × Γ∋
(
[ξX ], [ξY ], (a, b)

)
7→

[
t 7→

(
ξX(at), ξY (bt)

)]
∈ ∂σX⊗σYX ×p Y.

One may check that q is well-de�ned, i.e. the map t 7→ (ξX(at), ξY (bt)) is a (σX⊗ σY )-ray

for all choices of a σX-ray ξX , a σY -ray ξY and (a, b) ∈ Γ, whose asymptotic class does

not change when ξX or ξY is replaced with any other element of the asymptotic class of

ξX or ξY , respectively.

Let π be the quotient map of the equivalence relation ∼∗ on the set ∂σXX×∂σY Y × Γ,

where ∼∗ is � upon an identi�cation of Γwith [0, 1]� the equivalence relation standardly
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used to de�ne the join of the spaces ∂σXX and ∂σY Y , i.e. ∼∗ is the smallest equivalence

relation such that (x, y, (1, 0)) ∼∗ (x, y′, (1, 0)) and (x, y, (0, 1)) ∼∗ (x′, y, (0, 1)) for all

x, x′ ∈ ∂σXX and y, y′ ∈ ∂σY Y . Observe that for any pair ξ, ζ of σX-rays or of σY -rays

originating from a common basepoint, and numbers a, a′ > 0, the function [0,∞) ∋ t 7→
d(ξ(at), ζ(a′t)) is zero i� a = a′ and ξ = ζ, or a = a′ = 0. This observation implies that the

map q (setwise) factors (in a unique way) as q = qππ, with the map qπ : ∂σXX ∗ ∂σY Y →
∂σX⊗σYX ×p Y being one-to-one. We shall show that qπ is a homeomorphism: since the

set ∂σXX × ∂σY Y × Γis compact, and we have already shown that qπ is one-to-one, it is

su�cient to show that qπ is a continuous surjection.

The surjectivity of qπ is equivalent to the surjectivity of q. We check the latter below.

Take a (σX⊗ σY )-ray (γX , γY ) in X ×p Y . By the de�nition of the product bicombing,

we have that γX(αt) = γX |[0,t](αt) = σγX(0)γX(t)(α) for all t ≥ 0 and 0 ≤ α ≤ 1; there-

fore for all t > 0 and 0 ≤ s ≤ s′ ≤ t we have that im γX |[s,s′] = imσγX(s),γX(s′) and

dX(γ
X(s), γX(s′)) = (s′ − s)at (where at = dX(γ

X(0), γX(t))/t). Dividing the second of

these equalities by (s′ − s), we see that at is a constant independent of t � denote it

by a; therefore γX satis�es im γX |[s,s′] = imσγX(s),γX(s′) and d(γX(s), γX(s′)) = (s′ − s)a

for all s′ ≥ s ≥ 0. Hence: if a ̸= 0, then ξX : [0,∞) → X given by ξX(t) = γX(a−1t)

is a σX-ray; and if a = 0, then γX is constant, so any σX-ray ξX originating in γX(0)

satis�es γX(t)(= γX(0)) = ξX(at) for all t ≥ 0. Similarly, one obtains that there exists a

σY -ray ξY such that γY (t) = ξY (bt) for all t ≥ 0, where b = dY (γ
Y (0), γY (1)). The speed

parameters a, b satisfy

1 = dX×pY

(
(γX(0), γY (0)), (γX(1), γY (1))

)
=

∥∥(dX(γX(0), γX(1)), dY (γY (0), γY (1)))∥∥p
= ∥(a, b)∥p.

The surjectivity of q follows.

The continuity of qπ is equivalent to the continuity of q, which we check below at each

point (x̄, ȳ, (a, b)) ∈ ∂σXX × ∂σY Y × Γ. Fix a basepoint o = (oX , oY ) ∈ X × Y . Consider

any R, ϵ > 0. Then for any δ > 0, x̄′ ∈ UoX (x̄, R, δ) ∩ ∂σXX, ȳ′ ∈ UoY (ȳ, R, δ) ∩ ∂σY Y ,

and (a′, b′) ∈ Γwith |a′ − a|, |b′ − b| < δ, we have

dX(ϱ
X
oX ,x̄(aR), ϱ

X
oX ,x̄′(a′R)) ≤ dX(ϱ

X
oX ,x̄(aR), ϱ

X
oX ,x̄(a

′R)) + dX(ϱ
X
oX ,x̄(a

′R), ϱXoX ,x̄′(a′R))

≤ δR + a′Rδ ≤ δR + δR = 2δR.

Since a similar reasoning applies in Y , we jointly have

dX×pY

(
ϱX×Y
o,q(x̄,ȳ,(a,b))(R), ϱ

X×Y
o,q(x̄′,ȳ′,(a′,b′))(R)

)
≤ 21/p · 2δR,

which is smaller than ϵ for su�ciently small δ.
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6. Quasisymmetric structure on boundary

Let (X, d) be a complete metric space that admits a ccc bicombing σ. In this section we

de�ne a metric do,C on the boundary ∂σX such that if a group G acts on X via isometries

and σ is G-equivariant, then the induced action on (∂σX, do,C) is via quasisymmetries (see

de�nitions below). Similar properties of a similar metric have been studied in the case of

CAT(0) spaces in [Mor16, Section 3.1] and [O�15, Proposition 9.6(1)], where, basically,

only the ccc-ness of the CAT(0)-bicombing is used, and we reformulate and adapt the

proofs to our setting.

For metric spaces (X1, d1), (X2, d2), a map f : (X1, d1) → (X2, d2) is a quasisymmetry

if f is not constant and there exists a homeomorphism η : [0,∞) → [0,∞) such that for all

x, y, z ∈ X1 and t ≥ 0, if d1(x, y) ≤ td1(x, z), then d2(f(x), f(y)) ≤ η(t)d2(f(x), f(z)). By

[Hei01, Proposition 10.6], quasisymmetries are closed under composition, each quasisym-

metry is one-to-one, and the inverse (de�ned on its image) of a quasisymmetry is also a

quasisymmetry.

Let C > 0 and o ∈ X. For x̄1, x̄2 ∈ ∂σX such that x̄1 ̸= x̄2, de�ne do,C(x̄1, x̄2) = t−1,

where t is the unique number such that d(ϱo,x̄1(t), ϱo,x̄2(t)) = C (recall Proposition 2.1(i)),

and let do,C(x̄, x̄) = 0 for all x̄ ∈ ∂σX.

Proposition 6.1. Let (X, d) be a complete metric space that admits a ccc bicombing σ.

Then the following hold for every C,C ′ > 0 and o, o′ ∈ X.

(i) The map do,C is a metric.

(ii) The topology induced by do,C coincides with the topology on ∂σX de�ned in Section 2.

(iii) The identity map id : (∂σX, do,C) → (∂σX, do,C′) is a quasisymmetry.

(iv) The identity map id : (∂σX, do,C) → (∂σX, do′,C) is a quasisymmetry.

(v) Let G act on X via isometries in such a way that σ is G-equivariant. Then the

extension of the action of each element of G to Xσ restricts to a quasisymmetry of

(∂σX, do,C).

Proof. (i) Let x̄1, x̄2, x̄3 ∈ ∂X. The function do,C clearly satis�es do,C(x̄1, x̄2) = 0 i�

x̄1 = x̄2, and is symmetric, so it remains to show that do,C satis�es the triangle inequality.

Suppose without loss of generality that do,C(x̄1, x̄3) ≥ do,C(x̄1, x̄2), do,C(x̄2, x̄3), and let

tij := do,C(x̄i, x̄j)
−1. We have that

C = d(ϱo,x̄1(t13), ϱo,x̄3(t13)) ≤ d(ϱo,x̄1(t13), ϱo,x̄2(t13)) + d(ϱo,x̄2(t13), ϱo,x̄3(t13))

≤ (t13/t12)d(ϱo,x̄1(t12), ϱo,x̄2(t12)) + (t13/t23)d(ϱo,x̄2(t23), ϱo,x̄3(t23)) = Ct13(t
−1
12 + t−1

23 ),
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where the last inequality follows from conicality of σ. Therefore t−1
12 ≤ t−1

13 + t−1
23 , and the

claim follows.

(ii) Observe that by the de�nition, for any ϵ, r > 0 and x̄1 ∈ ∂X we have that

Bdo,C (x̄1, ϵ) = Uo(x̄1, 1/ϵ, C)∩∂σX. To �nish the proof of the claim, consider x̄1, x̄2 ∈ ∂σX

and R, ϵ > 0 such that x̄2 ∈ Uo(x̄1, R, ϵ) ∩ ∂σX. There exists ϵ′ such that C > ϵ′ > 0 and

Uo(x̄2, R, ϵ
′) ⊆ Uo(x̄1, R, ϵ). Then, by conicality, Uo(x̄2, R, ϵ

′) ∩ ∂σX ⊇ Uo(x̄2, RC/ϵ
′, C) ∩

∂σX = Bdo,C (x̄2, ϵ
′/RC).

(iii) Let µ = min(C,C ′) and M = max(C,C ′). By conicality of σ, for any x̄1, x̄2 ∈ ∂X

we have do,M(x̄1, x̄2) ≤ do,µ(x̄1, x̄2) ≤ (M/µ)do,M(x̄1, x̄2). The claim follows.

(iv) Since quasisymmetries are closed under composition, in view of (iii), we can

assume that C > 2d(o, o′). Let x̄1, x̄2 ∈ ∂X be di�erent and t := do,C(x̄1, x̄2)
−1. If

d(ϱo′,x̄1(t), ϱo′,x̄2(t)) ≥ C, then do′,C(x̄1, x̄2) ≥ t−1 = do,C(x̄1, x̄2). Otherwise, observe that

by the triangle inequality and Proposition 2.1(i),

d(ϱo′,x̄1(t), ϱo′,x̄2(t)) ≥ d(ϱo,x̄1(t), ϱo,x̄2(t))

− d(ϱo,x̄1(t), ϱo′,x̄1(t))− d(ϱo,x̄2(t), ϱo′,x̄2(t)) ≥ C − 2d(o, o′).

By conicality of σ,

d

(
ϱo′,x̄1

(
tC

C − 2d(o, o′)

)
, ϱo′,x̄2

(
tC

C − 2d(o, o′)

))
≥ C

C − 2d(o, o′)
d(ϱo′,x̄1(t), ϱo′,x̄2(t)) ≥ C,

therefore do′,C(x̄1, x̄2)−1 ≤ tC/(C − 2d(o, o′)).

Summarising both cases, do,C(x̄1, x̄2) ≤ (C/(C − 2d(o, o′)))do′,C(x̄1, x̄2). Therefore, as

we can swap o with o′ in the above reasoning, the claim follows.

(v) Observe that the action of each element g ∈ G on X induces an an isometry

between (∂σX, do,C) and (∂σX, dgo,C), therefore the claim follows by (iv) and the fact that

quasisymmetries are closed under composition.

7. Axes, flats, and the topology of boundary

We begin this section with a brief recap of some standard terminology. For an isometry

φ of a metric space (X, d), we de�ne |φ| := infx∈X d(x, φ(x)), Min(φ) := {x ∈ X :

d(x, φ(x)) = |φ|}, and we call an isometric embedding γ : R → X an axis of φ if there

exists a number T > 0 such that φ(γ(t)) = γ(t + T ) for all t ∈ R. By the triangle
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inequality, for any x ∈ X and n ∈ N we have that

nT = d(γ(0), φn(γ(0))) ≤ d(γ(0), x) + d(x, φn(x)) + d(φn(x), φn(γ(0)))

≤ 2d(γ(0), x) + nd(x, φ(x)),

therefore T = |φ|, and im γ ⊆ Min(φ). For a bicombing σ on X, we call an axis γ of φ a

σ-axis if im γ|[s,t] = imσγ(s),γ(t) for all real numbers s < t.

Proposition 7.1 (Proposition VII). Let G = G1 ∗Z G2 (with G1 ̸= Z ̸= G2), where

Z is virtually Z, act geometrically on a proper metric space (X, dX) that admits a ccc,

reversible, G-equivariant bicombing σ. Then there exists a separating pair of points in the

boundary ∂σX.

Proof. We brie�y recall the normal form for the amalgamated product as in e.g. [Ser80,

Theorem 1 in I.1.2], which we use in this proof. For i = 1, 2, choose a set Ri of represent-

atives of non-trivial right cosets of Z in Gi. Then each element g ∈ G may be represented

in a unique way as g = z · r1 · r2 · . . . · rk, where z ∈ Z, rj ∈ R1 ∪ R2 for 1 ≤ j ≤ k, and

rj ∈ R1 i� rj+1 ∈ R2 for 1 ≤ j ≤ k − 1. We refer to k as the length of the normal form

representation of g, and for 1 ≤ j ≤ k we refer to rj as the j-th term of this representation.

Since G acts geometrically on a proper metric space, it is �nitely generated. Let Γ be

the Cayley graph for G over a �nite set of generators S contained in G1 ∪G2. Let

Ai := {g ∈ G : the �rst term in the normal form representation for g belongs to Gi}

for i = 1, 2. Then G is the disjoint union of A1, Z and A2. Since the generating set S

is a subset of G1 ∪G2, the lengths of the normal form representations for any two group

elements connected by an edge in the graph Γ di�er by at most 1, and, for i = 1, 2, the

neighbours in the graph Γ of the elements of Ai are contained in the set Ai ∪ Z, which

implies that any path in Γ from an element of A1 to an element of A2 must pass through

the set Z.

Let M be a cyclic subgroup of �nite index of Z, and let m be a generator of M .

By [DL16, Proposition 5.5], m has a σ-axis µ. Let α be the quasi-isometry given by

G ∋ g 7→ gµ(0) ∈ X. Let C > 0 be such thatM is C-dense in Z (with respect to the metric

dΓ from the graph Γ), the image α(G) is C-dense in X, and for all g, g′ ∈ G the inequality

C−1dΓ(g, g
′)−C ≤ dX(α(g), α(g

′)) ≤ CdΓ(g, g
′)+C holds. Put Xi := B(α(Ai∪Z), C+1)

for i = 1, 2. Clearly, X1 and X2 are open subsets of X such that X1 ∪X2 = X. Consider

any element x ∈ X1 ∩ X2. Then there exist ai ∈ Ai ∪ Z, where i = 1, 2, such that

dX(α(ai), x) < C + 1. Therefore dX(α(a1), α(a2)) < 2C + 2, so dΓ(a1, a2) < 3C2 + 2C.

Since, as discussed above, the path in Γ from a1 to a2 necessarily passes through Z, we
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have that dΓ(ai, Z) < 3C2 + 2C for i = 1, 2, which, as α(M) ⊆ imµ, gives that

dX(x, imµ) ≤ dX(x, α(M)) ≤ dX(x, α(a1)) + dX(α(a1), α(M))

< C + 1 + CdΓ(a1,M) + C ≤ 2C + 1 + C(dΓ(a1, Z) + C)

< 2C + 1 + C(3C2 + 2C + C) =: C.

Therefore X1 ∩X2 ⊆ B(imµ,C).

Let ξ+, ξ− : [0,∞) → X be the σ-rays de�ned by ξ+(t) := µ(t) and ξ−(t) := µ(−t).
We show that the pair of points [ξ+], [ξ−] disconnects the boundary ∂σX. Consider any

σ-ray ζ ̸∈ {ξ+, ξ−} based in µ(0). By Proposition 2.1(iii), there exists r > 0 such that

d(ζ(t), imµ) ≥ C+ 2 for any t ≥ r, in particular there exists unique i ∈ {1, 2} such that

ζ(t) ∈ Xi for all t ≥ r. Denote

Ei := {[ζ] : ζ is a σ-ray, ζ(0) = µ(0), (∃r > 0)(∀t ≥ r)(ζ(t) ∈ Xi)};

we have that ∂σX is the disjoint union of E1, E2 and {[ξ−], [ξ+]}. It remains to show that

both E1 and E2 are non-empty open subsets of the boundary ∂σX. First, we prove the

openness. Let ζ, r and i be as above. Consider any σ-ray η such that d(η(r), ζ(r)) < 1.

By conicality and the triangle inequality, d(η(t), imµ) ≥ d(η(r), imµ) ≥ C + 1 for all

t ≥ r, therefore η(t) ∈ Xi, and [η] ∈ Ei. Now we prove that both sets Ei are non-empty.

Below we prove that E1 ̸= ∅, the case of E2 is symmetric. Let g1 ∈ R1 and g2 ∈ R2,

and let g := g1g2. Then for all n ∈ N \ {0}, since the normal form for gn is the n-fold

concatenation of the normal form for g, we have that gn ∈ A1, and, by the discussion

in the second paragraph of this proof, dΓ(gn, Z) ≥ 2n. Let γ be a σ-axis for g in X,

see [DL15, Proposition 5.5], and de�ne the σ-ray ζ to be the σ-ray originating in µ(0)

asymptotic to γ|[0,∞). Proposition 2.1(i) and the g-invariance of the metric dX give that

dX(ζ(|g|n), α(gn)) ≤ dX(ζ(|g|n), γ(|g|n)) + dX(γ(|g|n), α(gn))

≤ dX(ζ(0), γ(0)) + dX(g
nγ(0), gnµ(0)) = 2dX(γ(0), µ(0)) =: D.

We also have the following chain of inequalities

dX(α(g
n), imµ) ≥ dX(α(g

n), α(M))− |m|

≥ dX(α(g
n), α(Z))− |m| ≥ C−1dΓ(g

n, Z)− C − |m| ≥ C−1 · 2n− C − |m|.

Jointly, the last two chains of inequalities have the following two consequences, which

together give that [ζ] belongs to E1. First, for any n ∈ N, if ζ(|g|n) belongs to X2, then

openness of X1 and X2 gives that the σ-geodesic from the point ζ(|g|n) to the point α(gn),
belonging to X1, passes through X1 ∩X2; therefore

D ≥ d(α(gn), ζ(|g|n)) ≥ dX(α(g
n), X1 ∩X2) ≥ dX(α(g

n), imµ)−C,
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which tends to ∞ when n → ∞; therefore ζ(|g|n) belongs to X2 only for �nitely many

n ∈ N, so [ζ] does not belong to E2. Second, the inequality dX(ζ(|g|n), imµ) ≥ 1 holds

for su�ciently large n, therefore ζ is not asymptotic to any of the σ-rays ξ−, ξ+.

Proposition 7.2 (Proposition VIII). Let G be group that contains a free abelian sub-

group Zn ∼= A < G and acts geometrically on a proper metric space X that admits a ccc,

reversible, G-equivariant bicombing σX . Then ∂σXX contains a homeomorphic copy of

Sn−1. Moreover, if A is of �nite index in G, then ∂σXX ∼= Sn−1.

Proof. By [DL16, Theorem 1.2] X contains an isometric copy F of an n-dimensional

normed space on which A acts geometrically by translations. Observe that F admits a

(unique) ccc, A-equivariant bicombing σF , which consists of linear segments (recall [DL15,

Theorem 3.3]). Note that in general F is not σX-convex in X (see [DL16, Example 6.3]) �

if it was so, then the assertion would easily follow, as we would have σF = σX |F×F×[0,1],

which would allow us to view Sn−1 ∼= ∂σFF as a subset of ∂σXX. We shall de�ne a

homeomorphic embedding Φ: ∂σFF → ∂σXX. If, additionally, A is of �nite index in G,

then Φ turns out to be a surjection.

Fix a basepoint o ∈ F . For each a ∈ A, denote by ξFa the σF -ray that originates

in o and contains ao, pick a σX-axis γXa in X (see [DL16, Proposition 5.5]), and put

ξXa := γXa |[0,∞).

The construction of the map Φ, which consists in continuously extending the map

induced by sending ξFa to ξXa for each a ∈ A, is presented in detail below the following

claim, which is used to justify the correctness of the construction and various properties

of Φ. Picking one σX-axis γXa for each a ∈ A, rather than considering the set of all such

σX-axes, is more of an editorial choice; in particular, the de�ned map Φ does not depend

on this choice, as may be seen using part (A) of the claim below. The colours are used in

the further text to highlight the key places of the formulas and to aid the presentation of

the �ow of the argument.

Claim. Let a ∈ A and γ1, γ2 be axes (which are not necessarily σX-axes) of a. Then

(A) d(γ1(t), γ2(t)) ≤ 2|a|+ d(γ1(0), γ2(0)) =: C(|a|, γ1(0), γ2(0)) for any t ∈ R.

Let a1, a2 ∈ A and r > 0. Then

(B)
∣∣d(ϱXo,[ξXa1 ](r), ϱXo,[ξXa2 ](r))− d(ξFa1(r), ξ

F
a2
(r))

∣∣ ≤ C ′(a1) + C ′(a2),

where C ′(a) = C(|a|, ξXa (0), ξFa (0)) + d(ξXa (0), o);

(B♯) d(ϱXo,[ξXa1 ]
(r), ϱXo,[ξXa2 ]

(r)) ≤ d(ξFa1(r), ξ
F
a2
(r)).
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Proof. (A) For 0 ≤ t ≤ |a| the claim follows by the triangle inequality:

d(γ1(t), γ2(t)) ≤ d(γ1(t), γ1(0)) + d(γ1(0), γ2(0)) + d(γ2(0), γ2(t))

≤ |a|+ d(γ1(0), γ2(0)) + |a|.

The case of arbitrary t ∈ R follows from a-invariance of the metric d and shifting along

axes.

o

ξFa1
(r)

ξFa2
(r)

̺X
o.[ξX

a1
](r)

̺X
o,[ξX

a2
](r) ξXa1

(r)

ξXa2
(r)

F

ξXa1

ξXa2

̺X
o,[ξX

a2
]

̺X
o,[ξX

a1
]

ξFa2

ξFa1

Figure 3: Claim (B).

(B) By the triangle inequality, we obtain that∣∣d(ϱXo,[ξXa1 ](r), ϱXo,[ξXa2 ](r))− d(ξFa1(r), ξ
F
a2
(r))

∣∣
≤ d(ϱXo,[ξXa1 ]

(r), ξFa1(r)) + d(ϱXo,[ξXa2 ]
(r), ξFa2(r))

≤ d(ϱXo,[ξXa1 ]
(r), ξXa1(r)) + d(ξXa1(r), ξ

F
a1
(r)) + d(ϱXo,[ξXa2 ]

(r), ξXa2(r)) + d(ξXa2(r), ξ
F
a2
(r)).

The claim follows, as for any i ∈ {1, 2} the following two inequalities hold: by Proposi-

tion 2.1(i), we have that d(ϱXo,[ξXai ]
(r), ξXai (r)) ≤ d(ϱXo,[ξXai ]

(0), ξXai (0)); and, by Claim (A) ap-

plied to axes containing ξXai and ξ
F
ai
, we have that d(ξXai (r), ξ

F
ai
(r)) ≤ C(|ai|, ξXai (0), ξ

F
ai
(0)).

(B♯) Fix R > r. By scaling in F , d(ξFa1(R), ξ
F
a2
(R)) = d(ξFa1(r), ξ

F
a2
(r)) ·R/r. Therefore,
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by conicality of σX and (B) (applied for R and a1, a2),

d(ϱXo,[ξXa1 ]
(r), ϱXo,[ξXa2 ]

(r)) ≤ d(ϱXo,[ξXa1 ]
(R), ϱXo,[ξXa2 ]

(R)) · r/R

≤ (d(ξFa1(R), ξ
F
a2
(R)) + C ′(a1) + C ′(a2)) · r/R

= d(ξFa1(r), ξ
F
a2
(r)) + (C ′(a1) + C ′(a2)) · r/R.

The claim follows, as R may be chosen arbitrarily large.

Let FA ⊆ ∂σFF be the asymptotic classes of σF -rays belonging the set {ξFa : a ∈ A}.
De�ne ΦA : FA → ∂σXX to be the map induced by the map ξFa 7→ ξXa . Claim (B♯) implies

that the map ΦA is well-de�ned (i.e. if two elements a, b ∈ A are such that ξFa = ξFb , then

ξXa and ξXb are asymptotic) and 1-Lipschitz from (FA, d
F
o,1) to (∂σXX, dXo,1), where d

F
o,1 and

dXo,1 are the metrics discussed in Section 6. Therefore, since FA is dense in ∂σFF , the map

ΦA can be extended continuously to a map Φ: ∂σFF → ∂σXX.

We show that Φ is one-to-one. Since ∂σFF ∼= Sn−1 is compact, this will imply that Φ

is a homeomorphic embedding onto its image. Let ξF1 ̸= ξF2 be σF -rays based in o, and let

ain ∈ A for i = 1, 2 and n ∈ N be such that [ξFain ] converges to [ξFi ] in ∂σFF for i = 1, 2. We

may choose r > 0 such that d(ξF1 (r), ξ
F
2 (r)) ≥ 8, and N ∈ N such that for any n ≥ N and

i = 1, 2 we have d(ξFain(r), ξ
F
i (r)) ≤ 1. In particular, d(ξF

a1N
(r), ξF

a2N
(r)) ≥ 6. By Claim (B)

and scaling in F , for any R > r,

d(ϱXo,[ξX
a1
N

](R), ϱ
X
o,[ξX

a2
N

](R)) ≥ d(ξFa1N
(R), ξFa2N

(R))− C ′(a1N)− C ′(a2N)

= d(ξFa1N
(r), ξFa2N

(r)) ·R/r − C ′(a1N)− C ′(a2N) ≥ 6R/r − C ′(a1N)− C ′(a2N),

which is greater than 5R/r for su�ciently large R. Using Claim (B♯) and scaling in F ,

we obtain that for any n ≥ N

d(ϱXo,[ξX
ain

](R), ϱ
X
o,[ξX

ai
N

](R)) ≤ d(ξFain(R), ξ
F
aiN
(R))

≤ d(ξFain(R), ξ
F
i (R)) + d(ξFi (R), ξ

F
aiN
(R)) ≤ R/r +R/r = 2R/r.

Therefore

d(ϱXo,[ξX
a1n

](R), ϱ
X
o,[ξX

a2m
](R))

≥ d(ϱXo,[ξX
a1
N

](R), ϱ
X
o,[ξX

a2
N

](R))− d(ϱXo,[ξX
a1n

](R), ϱ
X
o,[ξX

a1
N

](R))− d(ϱXo,[ξX
a2m

](R), ϱ
X
o,[ξX

a2
N

](R))

≥ 5R/r − 2R/r − 2R/r ≥ R/r

for any n,m ≥ N and su�ciently large R. Therefore, passing to the limit with n and

m, one obtains that d(ϱX
o,Φ([ξF1 ])

(R), ϱX
o,Φ([ξF2 ])

(R)) ≥ R/r > 0, which implies that Φ([ξF1 ]) ̸=
Φ([ξF2 ]).
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Now we prove the last part of the statement of this proposition: assume additionally

that A is of �nite index in G; we show that then Φ is onto. Let C > 0 be such that

the set Ao of A-translates of o satis�es B(Ao,C) = X. Let ξX be a σX-ray based in

o. For every n ∈ N there exists an ∈ A such that d(ano, ξX(n)) ≤ C. It su�ces to

show that ϱXo,[ξXan ](r) converges to ξX(r) when n → ∞ for any r > 0. First, observe

that ||an| − n| = |d(ano, o) − d(o, ξX(n))| ≤ d(ano, ξ
X(n)) ≤ C, therefore, in particular,

|an| → ∞. Second, since translating a σX-axis of a ∈ A by an element of the centraliser

C(a) ⊇ A produces a σX-axis of a, and B(Ao,C) = X, there exists a σX-axis θXa of a

such that d(θXa (0), o) ≤ C; put ζXa := θXa |[0,∞); by Claim (A), the σX-rays ζXa and ξXa are

asymptotic. By the triangle inequality and Proposition 2.1(i), we have that

d(ϱXo,[ξXan ]
(|an|), ξX(|an|)) = d(ϱXo,[ζXan ]

(|an|), ξX(|an|))

≤ d(ϱXo,[ζXan ]
(|an|), ζXan(|an|)) + d(ζXan(|an|), ano) + d(ano, ξ

X(n)) + d(ξX(n), ξX(|an|))

≤ d(ϱXo,[ζXan ]
(0), ζXan(0)) + d(anζ

X
an(0), ano) + C + ||an| − n| ≤ C + C + C + C = 4C;

then the conicality of σX gives that d(ϱXo,[ξXan ](r), ξ
X(r)) ≤ 4Cr/|an| whenever r ≤ |an|.

Therefore, since |an| → ∞, we have that d(ϱXo,[ξXan ](r), ξ
X(r)) → 0 for all r ≥ 0.

8. Almost geodesic completeness

A space X that admits a bicombing σ is almost σ-geodesically complete if for some (equi-

valently, for all � see Proposition 2.1(i)) basepoint o ∈ X there exists a universal con-

stant C > 0 such that for each point x ∈ X there is a σ-ray ξ such that ξ(0) = o and

im ξ ∩B(x,C) ̸= ∅. In this section we prove the following theorem.

Theorem 8.1 (Theorem X; cf. [GO07, Corollary 3]). Assume that X is a proper non-

compact �nite-dimensional geodesic metric space that admits a ccc geodesic bicombing σ

and a cocompact group action via isometries. Then X is almost σ-geodesically complete.

The proof from [Ont05; GO07], where the space X is assumed to be CAT(0), can be

translated to the context of spaces admitting a ccc geodesic bicombing. We expand on it

below.

8.1. Preparatory lemmas

Recall De�nition 2.3 and Proposition 2.4. Let Coneo(A) := expo(A × [0,∞]) for any set

A ⊆ ∂σX and basepoint o ∈ X.
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Lemma 8.2 (cf. proof of [GO07, Main Theorem]). Let X be a proper metric space that

admits a ccc geodesic bicombing. Then for every non-empty closed set A ⊆ ∂σX there

exists a closed set D ⊆ Xσ such that (i) D∩∂σX = A, (ii) Coneo(A) ⊆ D, (iii) D∩X ⊆
BX(Coneo(A) ∩X, 1), and (iv) D is a strong deformation retract of Xσ.

Proof. For any ā ∈ A and x̄ ∈ Xσ, we have by convexity of σ that the function

δāx̄ : [0,∞) ∩ [0, ℓo(x̄)] → R given by δāx̄(s) = d(expo(ā, s), expo(x̄, s)) is non-decreasing,

strictly increasing on (δāx̄)
−1((0,∞)) and continuous. Since A is compact, the func-

tion µA
x̄ : [0,∞) ∩ [0, ℓo(x̄)] → R given by µA

x̄ (s) = minā∈A δ
ā
x̄(s) is well-de�ned, and is

non-decreasing and strictly increasing on (µA
x̄ )

−1((0,∞)), as the functions δāx̄ are; it is

continuous by the following argument. Let s ∈ [0,∞) ∩ [0, ℓo(x̄)]. Consider any se-

quence (sn) ⊆ [0,∞) ∩ [0, ℓo(x̄)] converging to s from above. Let ā ∈ A be such that

µA
x̄ (s) = δāx̄(s). Then we have δāx̄(sn) ≥ µA

x̄ (sn) ≥ µA
x̄ (s) = δāx̄(s). As the left hand side

converges to the right hand side as n→ ∞, we have that µA
x̄ (sn) → µA

x̄ (s). Now, assume

that we have a sequence (sn) ⊆ [0,∞) ∩ [0, ℓo(x̄)] approaching s from below. Let ān be

such that µA
x̄ (sn) = δānx̄ (sn). By compactness of A, each subsequence of (n)n∈N admits a

subsequence (nk)k∈N such that ānk
is convergent to some ā ∈ A. We have the following

inequalities: µA
x̄ (s) ≥ µA

x̄ (snk
) = d(expo(x̄, snk

), expo(ānk
, snk

)). By continuity of expo,

passing to the limit with k we obtain that µA
x̄ (s) ≥ µA

x̄ (snk
) → δāx̄(s) ≥ µA

x̄ (s). Therefore

µA
x̄ (sn) → µA

x̄ (s).

De�ne ω : Xσ → [0,∞] by ω(x̄) = sup{s ∈ [0,∞) ∩ [0, ℓo(x̄)] : µ
A
x̄ (s) ≤ 1} (in slightly

informal terms: `walk from o along the σ-geodesic/ray to x̄ until reaching x̄ or diverging

to a �sphere-wise� distance at least 1 from all of the σ-rays that begin in o and end in A;

the distance covered is ω(x̄)') and let D := {x̄ ∈ Xσ : ℓo(x̄) = ω(x̄)}. It easily follows

that D satis�es (ii) and (iii), and that A ⊆ D ∩ ∂σX. The other inclusion required by

property (i) is satis�ed, as

D ∩ ∂σX = {x̄ ∈ ∂σX : (∀s ≥ 0)(∃ā ∈ A)(d(ϱo,x̄(s), ϱo,ā(s)) ≤ 1)}

⊆ {x̄ ∈ ∂σX : (∀s ≥ 0)(∃ā ∈ A)(do,2(x̄, ā) ≤ s−1)} ⊆ A = A

(recall Proposition 6.1(i)). It is su�cient to prove that ω is continuous, as then it imme-

diately follows that D is closed, and that property (iv) is satis�ed, as then we have the

following retraction: Xσ × [0,∞] ∋ (x̄, s) 7→ expo(x̄,max(s, ω(x̄))) ∈ Xσ.

Claim. Assume that (x̄n) ⊆ Xσ converges to x̄ ∈ Xσ and ω(x̄n) converges to some

t ∈ [0,∞]. Then (A) if ℓo(x̄) > s > t, then µA
x̄ (s) ≥ 1; (B) if t > s ≥ 0 then µA

x̄ (s) ≤ 1;

(C) ω(x̄) = t.

Proof. (A) If not, then there exists ā ∈ A such that d(expo(x̄, s), expo(ā, s)) = δāx̄(s) < 1.

Since x̄n → x̄, for large enough n we have that δāx̄n
(s) = d(expo(x̄n, s), expo(ā, s)) < 1,
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and, as ℓo is continuous, s < ℓo(x̄n). This implies that ω(x̄n) > s for su�ciently large n,

thus t ≥ s. Contradiction.

(B) Let ān ∈ A be such that δānx̄n
(ω(x̄n)) = µA

x̄n
(ω(x̄n)). Then we have that 1 ≥

δānx̄n
(ω(x̄n)) = d(expo(x̄n, ω(x̄n)), expo(ān, ω(x̄n))). Since ω(x̄n) → t, for large enough n we

have that ω(x̄n) ≥ s, therefore 1 ≥ d(expo(x̄n, s), expo(ān, s)). Therefore, by compactness

of A, there exists ā ∈ A such that 1 ≥ d(expo(x̄, s), expo(ā, s)) = δāx̄(s) ≥ µA
x̄ (s).

(C) First, note that passing to the limit with ω(x̄n) ≤ ℓo(x̄n) gives that t ≤ ℓo(x̄). If t =

ℓo(x̄) > 0, then by (B) we have that ω(x̄) ≥ s for any s < t, therefore t = ℓo(x̄) ≥ ω(x̄) ≥ t,

so ω(x̄) = t. If t = ℓo(x̄) = 0, then ω(x̄) = 0 = t, as 0 ≤ ω(x̄) ≤ ℓo(x̄) = 0. Otherwise,

we have that t < ℓo(x̄). Claim (A) implies that µA
x̄ (t) ≥ 1. Since ℓo(x̄n) → ℓo(x̄), we

have for su�ciently large n that ω(x̄n) < ℓo(x̄n); also note that ω(x̄n) ≥ 1/2, which in

the limit implies that t ≥ 1/2 > 0, since µA
x̄n
(ω(x̄n)) = 1 and the diameter of B(o, 1/2) is

not greater than 1; therefore Claim (B) implies that µA
x̄ (t) ≤ 1. Since µA

x̄ is increasing on

(µA
x̄ )

−1((0,∞)), t is the unique number such that µA
x̄ (t) = 1, and ω(x̄) = t.

Continuity of ω now follows, as each subsequence of a convergent sequence in Xσ

admits a subsequence that satis�es the assumptions of Claim (C) above.

For a simplicial complex K, below we consider it with the piecewise�unit-ℓ∞ metric.

That is, we endow it with the gluing metric arising from the identi�cation of each k-simplex

[v0, . . . , vk] of K with the subspace {(λ0, . . . , λk) : λ0, . . . , λk ≥ 0 and λ0 + . . . + λk = 1}
of Rk+1 with the supremum metric.

Two spaces X, Y have the same bounded homotopy type if there exist (continuous)

maps f : X → Y and g : Y → X, and bounded homotopies hX : X × [0, 1] → X between

g ◦ f and idX , and hY : Y × [0, 1] → Y between f ◦ g and idY , i.e. homotopies such that

the diameters of the trajectories hX(x, · ) for x ∈ X and hY (y, · ) for y ∈ Y are bounded

by a constant independent of the choice of x and y. The maps f and g above are called

bounded homotopy equivalences.

Lemma 8.3 (cf. [BH99, Lemma I.7A.15]). Let X be a metric space that admits a locally

�nite open cover U = {B(xi, ϵ) : i ∈ I} for some ϵ > 0. Assume that for k ∈ {1, 3}
each ball B(xi, kϵ) admits a continuous function σi,kϵ : B(xi, kϵ) × B(xi, kϵ) × [0, 1] →
B(xi, kϵ) satisfying σi,kϵ(x, x′, 0) = x, σi,kϵ(x, x′, 1) = x′ for all x, x′ ∈ B(xi, kϵ), and that

these functions are such that σi,kϵ|(B(xi,kϵ)∩B(xj ,kϵ))2×[0,1] = σj,kϵ|(B(xi,kϵ)∩B(xj ,kϵ))2×[0,1] for all

i, j ∈ I. Then the nerve K of the cover U is a locally �nite simplicial complex of the

same bounded homotopy type as X.
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Moreover, if the space X is proper, geodesic and admits a cocompact group action

via isometries, and dimK < ∞, then the constructed bounded homotopy equivalences

f : X → K and g : K → X are quasi-isometries.

Remark 8.4. If the space X admits a conical bicombing σ, then one may construct the

families {σi,ϵ : i ∈ I} and {σi,3ϵ : i ∈ I} satisfying the properties required for them in the

statement above by restricting σ to appropriate balls.

Proof. The proof that X and the nerve of U are of the same bounded homotopy type

can be done using the construction from the proof of [BH99, Lemma I.7A.15], with the

change that instead of using the unique geodesic between a pair of points x, x′ ∈ B(xi, kϵ),

where i ∈ I and k ∈ {1, 3}, one may use the segment t 7→ σi,kϵ(x, x′, t). We present its

outline below.

Denote by vi the vertex in K corresponding to the ball B(xi, ϵ) ∈ U .

The map f : X → K is constructed via a partition of unity, which is almost subordinate

� it is subordinate upon ignoring the (topological) boundaries of the supports � to the

(locally �nite) open cover U : given x ∈ X and i ∈ I, de�ne φi(x) := max(0, ϵ− d(xi, x)),

and de�ne f(x) to have the vi-coordinate equal to φi(x)
/∑

j∈I φj(x). Observe that for

any i ∈ I we have the inclusion f(B(xi, ϵ)) ⊆ st(vi), where st(v) =
⋃
{int∆ : v ∈

∆, ∆ is a simplex of K} is the open star of the vertex v in K. In particular, f(B(xi, ϵ)) ⊆
B(f(xi), 2).

The map g : K → X is constructed inductively over the skeleta of K, maintaining the

property that for each vi we have that g(K(d) ∩ Stmax(vi)) ⊆ B(xi, ϵ), where K(d) is the

d-skeleton of K and Stmax(vi) consists of y ∈ K whose vi-coordinate is not smaller than

any other of its vj-coordinates (where j ranges over I). Put g(vi) := xi. Assume that we

have de�ned g on K(d). We shall extend it to K(d+1) for each (d + 1)-simplex ∆ in K

separately. Let yc be the central point of∆ and pick any point c ∈
⋂
{B(xj, ϵ) : vj ∈ ∆(0)}.

Given a point y ∈ ∆(d)∩Stmax(vj), where vj ∈ ∆(0), one may de�ne g to map the segment

[y, yc] via the map ty+ (1− t)yc 7→ σj,ϵ(g(y), c, t) ∈ B(xj, ϵ), where t ∈ [0, 1]. This gives a

well-de�ned continuous extension of g to the whole ∆, as the functions σj,ϵ are assumed to

agree with each other on intersections of their domains, are continuous and their domains

are open in X×X× [0, 1], and the considered segments [y, yc] cover the whole ∆. Observe

that for any i ∈ I we have that

g(st(vi)) ⊆ g
(⋃

{Stmax(vj) : vj = vi or {vi, vj} ∈ K(1)}
)

⊆ g
(⋃

{Stmax(vj) : d(xi, xj) < 2ϵ}
)
⊆

⋃
{B(xj, ϵ) : d(xi, xj) < 2ϵ} ⊆ B(xi, 3ϵ).

Regarding the bounded homotopy between g ◦ f and the identity of X, observe that
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for any i ∈ I we have that g(f(B(xi, ϵ))) ⊆ g(st(vi)) ⊆ B(xi, 3ϵ). Therefore, for a

point x ∈ B(xi, ϵ), we may de�ne the desired bounded homotopy to contain the map

(x, t) 7→ σi,3ϵ(g(f(x)), x, t). Similarly as above, it is a well-de�ned bounded homotopy

due to the assumptions on the functions σi,3ϵ.

Regarding the bounded homotopy between f ◦ g and the identity of K, observe that

for any simplex ∆ of K we have that

f(g(∆)) ⊆ f
(
g
(⋃

{Stmax(vj) : vj ∈ ∆(0)}
))

⊆ f
(⋃

{B(xj, ϵ) : vj ∈ ∆(0)}
)

⊆
⋃

{st(vj) : vj ∈ ∆(0)}.

It is now a standard fact that one may construct a homotopy hK between f ◦ g and idK

such that for each simplex ∆ of K the homotopy hK moves points of ∆ along piecewise-

linear segments contained in the union of open stars of vertices of ∆; in particular, hK is

a bounded homotopy.

Regarding the proof of the `moreover' part, note that we have proved above that the

compositions g ◦ f and f ◦ g are at �nite distance from the identity maps on X and K,

respectively, therefore it is su�cient to prove that f and g are coarsely Lipschitz.

Regarding the proof for f , �rst note that we have that for any compact A ⊆ X there

exists a constant CA such that the cardinality of any ϵ-net in A is bounded by CA. Indeed,

for any (ϵ/2)-net N and ϵ-net M in A we have that each ϵ-ball centred in an element of

M contains an element of N , and each element of N is contained in at most one ϵ-ball

centred in an element of M ; therefore |N | ≥ |M |, so it is su�cient to take CA equal to

the cardinality of any (ϵ/2)-net in A.

Our �rst goal is to show that sup{d(f(x), f(x′)) : x, x′ ∈ X, d(x, x′) ≤ 1} < ∞. Take

any o ∈ X. Since X admits a cocompact group action, there exists R > 0 such that the

translates of B(o,R) cover X. Let C := CB(o,R+1+ϵ) be as in the paragraph above. Let

x, x′ ∈ X be such that d(x, x′) ≤ 1. By picking a maximal subset of points of pairwise

distances not smaller than ϵ from the set {xi : i ∈ I, B(xi, ϵ) ∩ B(x, 1) ̸= ∅}, one obtains
a set I⊙ ⊆ I such that |I⊙| ≤ C, as any group element that translates x into B(o,R)

translates the set {xi : i ∈ I, B(xi, ϵ) ∩ B(x, 1) ̸= ∅} into B(o,R + 1 + ϵ). Since one

may connect x and x′ with a geodesic contained in B(x, 1), there exists a chain of points

xi1 , . . . , xik ∈ B(x, 1 + ϵ) such that ij ∈ I for 1 ≤ j ≤ k, B(xij , ϵ) ∩ B(xij+1
, ϵ) ̸= ∅ for

1 ≤ j < k, x ∈ B(xi1 , ϵ) and x
′ ∈ B(xik , ϵ). Observe that for each ij, where 1 ≤ j ≤ k,

there exists i⊙j ∈ I⊙ such that d(xij , xi⊙j ) < ϵ; in particular, f(xi⊙j ) belongs to B(f(xij), 2),

thus f(B(xij , ϵ)) ⊆ B(f(xij), 2) ⊆ B(f(xi⊙j ), 4). Then the chain of points xi⊙1 , . . . , xi⊙k is

such that i⊙j ∈ I⊙ for 1 ≤ j ≤ k, B(f(xi⊙j ), 4) ∩ B(f(xi⊙j+1
), 4) ̸= ∅ for 1 ≤ j < k,

f(x) ∈ B(f(xi⊙1 ), 4) and f(x
′) ∈ B(f(xi⊙k

), 4). By taking the shortest among such chains,
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one may assume that k ≤ |I⊙| ≤ C; then we have that d(f(x), f(x′)) ≤ 4k ≤ 4C. Finally,

for arbitrary x, x′ ∈ X, by considering a geodesic between x and x′, and the triangle

inequality, one may obtain that d(f(x), f(x′)) ≤ 4C⌈d(x, x′)⌉ ≤ 4Cd(x, x′) + 4C, where

⌈·⌉ is the ceiling function.

Regarding the proof for g, recall the identi�cation of d-simplices with appropriate

subset of Rd+1 with the supremum metric, and observe that for any i ∈ I, assigning to

an element of the open star st(vi) the value of its vi-coordinate is a 1-Lipschitz function.

Therefore, for any y ∈ K and i ∈ I such that y ∈ st(vi) we have that B(y, λi) ⊆ st(vi),

where λi is the value of the vi-coordinate of y. Therefore, as dimK <∞, for each y ∈ K

there exists a vertex viy such that B(y, 1/ dim(K)) ⊆ st(viy). Consider y, y′ ∈ K. If

d(y, y′) ≤ 1/(2 dim(K)), then d(f(y), f(y′)) ≤ 6ϵ (as f(st(viy)) ⊆ B(xiy , 3ϵ)). Therefore

for arbitrary y, y′ ∈ K we have that

d(f(y), f(y′)) ≤
⌈

d(y, y′)

(2 dim(K))−1

⌉
· 6ϵ ≤ 12 dim(K)ϵd(y, y′) + 6ϵ.

The default cohomology theory in this section is the Alexander�Spanier cohomology

H̄∗. We note that all of the reasonings in the remaining part of this subsection also work

with the simplicial cohomology in the place of the Alexander�Spanier cohomology; the

extra properties of the latter cohomology theory, mainly the consequences of admitting

more so-called taut pairs, see [Spa94, above 6.1.7, and Section 6.6], will be used mainly

in Remark 8.7 and the proof of Theorem 8.8.

For a topological space X, the (Alexander�Spanier) cohomology with compact support

H̄∗
c (X) is de�ned as the direct limit of the system {H̄∗(X,X \ K) : K ⊆ X compact}

(with the homomorphism in this system being the maps induced by inclusions), see [Spa94,

Theorem 6.6.15]. We note here that excision, [Spa94, Theorem 6.4.4], allows us to view

the groups H̄∗
c (V ), where V ⊆ X is open, also as the following direct limit:

H̄∗
c (V ) ∼= lim

−→
{H̄∗(X,X \K) : K ⊆ V compact}. (8-1)

Let X be a proper metric space, i ∈ N and T be a function [0,+∞) → [0,+∞). Then

we say that the group H̄ i
c(X) of cohomology with compact support is:

• T -uniformly trivial, if the map H i
c(B(x, r)) → H i

c(B(x, r + T (r))) induced by (the

system of) inclusions, recall (8-1), is trivial;

• uniformly trivial, if it is T -uniformly trivial for some function T ;

• T -neighbourhood-uniformly trivial, if for each r > 0 and compact set A contained in

a closed ball of radius r the map H̄ i(X,X \A) → H̄ i(X,X \B(A, T (r))) induced by

inclusion is trivial.
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LetK be a locally �nite simplicial complex. By the simplicial cohomology with compact

support H∗
spl,c(K) we mean the one resulting from the (co)chain complex

C∗
spl,c(K) = {φ ∈ C∗

spl(K) : φ is supported in a �nite subcomplex of K}.

For i ∈ N and a function T : [0,∞) → [0,∞), we say that the group H i
spl,c(K) is

T -neighbourhood-uniformly trivial if for each r > 0 and i-cocycle φ supported in a �-

nite subcomplex L contained in a closed ball of of radius r there exists an (i− 1)-cochain

ψ supported in (a, necessarily �nite, subcomplex of K contained in) the compact set

B(L, T (r)). (Recall that we equip simplicial complexes with a piecewise�unit-ℓ∞ metric;

however, in the remainder of this section, we only really use the fact that the metric on a

simplicial complex is such that each simplex is of diameter at most 1, and that Lemma 8.3

holds.)

Lemma 8.5. (i) Let X be a proper metric space. If H̄ i
c(X) is T -uniformly trivial, then

it is (r 7→ 2T (r + 1) + 2r + 2)-neighbourhood-uniformly trivial.

(ii) Let (X, dX) and (Y, dY ) be proper metric spaces. Let f : X → Y and g : Y → X be

bounded homotopy equivalences. Assume that f and g are quasi-isometries, and that

H̄ i
c(Y ) is T -neighbourhood-uniformly trivial. Then H̄ i

c(X) is (r 7→ CT (Cr + 2C2) +

2C)-neighbourhood-uniformly trivial for some C > 0.

(iii) Let K be a locally �nite simplicial complex and T : [0,+∞) → [0,+∞). (a) If

H̄ i
c(X) is T -neighbourhood-uniformly trivial, then H i

spl,c(X) is (r 7→ T (r + 1) + 3)-

neighbourhood-uniformly trivial. (b) If H i
spl,c(X) is T -neighbourhood-uniformly trivial,

then H̄ i
c(X) is (r 7→ T (r + 1) + 4)-neighbourhood-uniformly trivial.

Proof. (i) Consider ∅ ≠ A ⊆ B(x, r). Then the map

H̄ i(X,X \ A) → H̄ i(X,X \B(x, T (r + 1) + r + 1)),

in view of (8-1), factors as

H̄ i(X,X \ A) → H̄c(B(x, r + 1)) → H̄c(B(x, T (r + 1) + r + 1))

→ H̄ i(X,X \B(x, T (r + 1) + r + 1)),

therefore is trivial, as the middle arrow is trivial. The claim follows, as B(x, T (r+1)+r+1)

is of diameter at most 2(T (r + 1) + r + 1), hence

A ⊆ B(x, T (r + 1) + r + 1) ⊆ B(A, 2(T (r + 1) + r + 1)).

(ii) Denote by hX : X × [0, 1] → X the bounded homotopy between g ◦ f and idX .

Combining various assumptions of this lemma, we obtain that there exists a constant

C > 0 such that the diameter of the set hX({x} × [0, 1]) is smaller than C for all x ∈ X
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(in particular, the maps g ◦ f and idX are C-close), the image of g is C-dense in Y , and

for all y, y′ ∈ Y the inequality C−1dY (y, y
′)−C ≤ dX(g(y), g(y

′)) ≤ CdY (y, y
′)+C holds.

For any compact set A ⊆ X contained in a ball B(xA, r) we have the following diagram.

H̄ i(X,X \A) H̄ i(Y, Y \ g−1(A)) H̄ i(Y, Y \B(g−1(A), T (Cr + 2C2)))

H̄ i(X,X \ f−1(B(g−1(A), T (Cr + 2C2))))

H̄ i(X,X \B(A,C)) H̄ i(X,X \B(A,CT (Cr + 2C2) + 2C))

g∗

(gf)∗

id∗=(gf)∗

f∗

All unlabelled arrows are induced by inclusions. The maps (gf)∗, id∗ : H̄ i(X,X \ A) →
H̄ i(X,X \B(A,C)) are equal by the fact that the bounded homotopy hX between g ◦ f
and idX induces a homotopy between the maps (X,X \B(A,C)) → (X,X \ A) induced
by g ◦ f and idX (see [Spa94, Theorem 6.5.6]). The vertical map induced by inclusion

in the second column is well-de�ned by the following argument. Denote by A′ the set

f−1(B(g−1(A), T (Cr + 2C2))), and consider x′ ∈ A′. Then there exists y ∈ Y such that

dY (y, f(x
′)) ≤ T (Cr + 2C2) and g(y) ∈ A. Then we have that

dX(x
′, A) ≤ dX(x

′, g(y)) ≤ dX(x
′, g(f(x′))) + dX(g(f(x

′)), g(y))

≤ C + CdY (f(x
′), y) + C ≤ CT (Cr + 2C2) + 2C,

so the discussed map in the diagram is indeed well-de�ned.

The map in the �rst row that is induced by inclusion is zero, as the set g−1(A) is

contained in a ball of radius Cr+2C2: let yA ∈ Y be such that dX(g(yA), xA) ≤ C; then

g−1(A) ⊆ g−1(B(xA, r)) ⊆ g−1(B(g(yA), r + C)) ⊆ B(yA, C(r + C) + C2).

Finally, joining various pieces together, we obtain that the map

H̄ i(X,X \ A) → H̄ i(X,X \B(A,CT (Cr + 2C2) + 2C))

induced by inclusion (the result of going the down-right route in the diagram) is trivial

(as the result of going the right-right-down-down route in the diagram).

(iii) There is a canonical isomorphism between the simplicial cohomology and the

Alexander�Spanier cohomology of a simplicial complex relative to its subcomplex, see

e.g. [Spa94, Section 6.5 and Theorem 4.6.8]. For a subcomplex L of K we denote by Lc

the subcomplex of K consisting of simplices contained in K \L; observe that we have the
following inclusions: Lc ⊆ K \ L and K \B(L, 1) ⊆ Lc.

(a) Take φ ∈ Zi
spl,c(K) supported in a �nite subcomplex L of K that is contained in a

closed ball of radius r. Let L◦ be the �nite subcomplex of K consisting of the simplices

intersecting the set B(L, T (r+1)+1)) (in particular, L◦ ⊆ B(L, T (r+1)+2)). We have
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the following diagram.

H i
spl(K,Lc) H i

spl(K,L◦c )

H̄ i(K,Lc) H̄ i(K,K \B(L, 1)) H̄ i(K,K \B(L, T (r + 1) + 1)) H̄ i(K,L◦c )
∼= ∼=

The horizontal arrows are induced by inclusions. The vertical arrows are canonical

isomorphisms between cohomology theories. By the assumption, the middle arrow in

the second row is zero, therefore the arrow in the �rst row is zero. One has that

K \ L◦c ⊆ B(L◦, 1) ⊆ B(L, T (r + 1) + 3), which �nishes the proof.

(b) Let A ⊆ K be compact and contained in a closed ball of radius r. Let L be

the smallest subcomplex of K that contains A. Observe that L ⊆ B(A, 1), therefore is

contained in a ball of radius r + 1. Let L◦ be the smallest subcomplex of K containing

B(L, T (r+ 1) + 1) (so, in particular, L◦ ⊆ B(L, T (r+ 1) + 2) ⊆ B(A, T (r+ 1) + 3)). We

have the following diagram.

H̄ i(K,K \A) H̄ i(K,Lc) H̄ i(K,L◦c ) H̄ i(K,K \B(A, T (r + 1) + 4))

H i
spl(K,Lc) H i

spl(K,L◦c )
∼= ∼=

The horizontal arrows are induced by inclusions. The vertical arrows are canonical iso-

morphisms between cohomology theories. By the assumption, the arrow in the second

row is zero, therefore composition of the arrows in the top row is also zero.

Lemma 8.6 (cf. [GO07, Theorem 2, Proposition 1 and its Corollary]). Let X be a �nite-

dimensional proper metric space that admits a ccc geodesic bicombing σ and a cocompact

group action via isometries.

(i) There is a �nite-dimensional, countable, locally �nite simplicial complex K such that

X and K are of the same bounded homotopy type. Moreover, the bounded homotopy

equivalences justifying this fact may be chosen so that they are quasi-isometries.

(ii) If H̄ i
c(X) is trivial, then it is uniformly trivial.

(iii) Assume that H̄ i
c(X) is trivial for all i > k. Then there exists a number t̄ such that

the cohomology groups H̄ i
c(X) for i > k are (r 7→ t̄ )-neighbourhood-uniformly trivial,

i.e. for all compact A ⊆ X and i > k the map H̄ i(X,X \ A) → H̄ i(X,X \ B(A, t̄ ))

induced by inclusion is trivial.

(iv) Under the assumptions of (iii), there exists a number t such that the maps H̄ i
c(U) →

H̄ i
c(B(U, t)) (induced by the system of inclusions) are trivial for all open subsets U ⊆

X and i > k.
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Proof. (i) Consider a maximal set E ⊆ X such that for each pair of di�erent points

x, x′ ∈ E we have d(x, x′) ≥ 1. Then the family {B(x, 1) : x ∈ E} is an open cover of

X. Denote by K its nerve. Then, by the �rst two paragraphs of the proof of [GO07,

Theorem 2], we have that K is countable, locally �nite and �nite-dimensional. The

remaining properties of the complex K follow by Lemma 8.3 (see Remark 8.4).

(ii) The proof of [GO07, Proposition 1] may be applied directly, since the CAT(0)-

assumption is used only to deduce the conclusion of (i).

(iii) We are working with the following picture: H̄∗
c (X) ∼= H̄∗

c (K) ∼= H∗
spl,c(K), where

K is the simplicial complex from (i). Put n := dimK. By (ii), the bounded cohomo-

logy groups H̄ i
c(X) for i > k are uniformly trivial, and by a subsequent application of

Lemma 8.5(i), (ii) and (iii)(a), the bounded cohomology groups H i
spl,c(K) for i > k are

Ti-neighbourhood-uniformly trivial for some functions Ti, so we may pick a function T

such that each simplicial i-cocycle for k < i ≤ n with support contained in a closed ball

of radius r cobounds in the closed T (r)-neighbourhood of its support. Now it su�ces to

show that there exists a number t̄ such that for all i > k each simplicial i-cocycle in K

of bounded support cobounds in the closed t̄-neighbourhood of its support, as then the

claim follows from subsequent application of Lemma 8.5(iii)(b) and (ii).

To this end, we construct a chain homotopy D = Di : Ci
spl,c(K) → Ci−1

spl,c(K) between

the identity map id and the zero map for i > k that satis�es an additional property: for

each i there exists a number τ(i) such that for each c ∈ Ci
spl,c(K) we have that Dic is

supported in the closed τ(i)-neighbourhood of c. First, de�ne Di = 0 and take τ(i) = 0

for i > n. This clearly satis�es the required properties. Next, take i such that k < i ≤ n,

assume that we have de�ned Di+1 and τ(i+1), and let c be an i-cochain that is supported

in a simplex. Then Di must satisfy c = δDi+1c + Diδc, therefore δDic = c − Di+1δc.

Observe that the right-hand side is a cocycle:

δ(c−Di+1δc) = δc− (δDi+1)(δc) = δc− δc+Di+2(δδc) = 0 +Di+2(0) = 0,

therefore it cobounds in the closed T (τ(i+1)+2)-neighbourhood of its support, since, by

the assumption, it is supported in the closed (τ(i+1)+1)-neighbourhood of c. De�ne Dic

to be any (i− 1)-cochain that is supported in the closed T (τ(i+1)+2)-neighbourhood of

the support of c and satis�es the equation δDic = c −Di+1δc. Next, extend Di linearly

to Ci
spl,c(K). One may easily verify that it su�ces to take τ(i) := T (τ(i+ 1) + 2).

Finally, let t̄ := maxi>k τ(i). Given a simplicial i-cocycle c, we have that c = δDc +

Dδc = δDc, and, by the construction, Dc is supported in the closed t̄-neighbourhood of

c, as required.

(iv) Statement (iii) gives triviality of the maps H̄ i(X,X \ A) → H̄ i(X,X \ B(A, t̄ ))
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for A ⊆ U compact, which, in view of (8-1), implies the triviality of the limit map

H̄ i
c(U) → H̄ i

c(B(U, t̄+ 1)). Therefore it is su�cient to take t := t̄+ 1.

8.2. Main lemmas and proof of Theorem 8.1 (Thm. X)

Remark 8.7 (cf. [GO07, Remark 2]). Let X be a proper metric space that admits a ccc

geodesic bicombing σ. Then H̄∗+1
c (X) and the reduced Alexander�Spanier cohomology

group ˜̄H∗(∂σX) are isomorphic. Indeed, �x o ∈ X; then for any R > 0 and i ∈ N we have

the following fragment of the exact sequence of the pair (Xσ, Xσ \BX(o,R)):

H̄ i(Xσ) → H̄ i(Xσ \BX(o,R)) → H̄ i+1(Xσ, Xσ \BX(o,R)) → H̄ i+1(Xσ).

For i ≥ 1 the �rst and the last of these groups are trivial, as Xσ is contractible; therefore

the middle arrow is an isomorphism, which together with excision gives that

H̄ i(Xσ \BX(o,R)) ∼= H̄ i+1(Xσ, Xσ \BX(o,R)) ∼= H̄ i+1(X,X \BX(o,R));

passing to the limit, we obtain the desired isomorphism (see [Spa94, Theorem 6.6.2]).

Similarly follows the case of i = 0, where we have Z as the left term of the exact sequence

above.

In fact, the above argument works in a more general setting. Consider a compact subset

Z of a compact space X, such that Z is a Z-set in X. Let {ht : X → X : t ∈ [0, 1]} be the

homotopy from the de�nition of Z-set. Assume that X is contractible and
⋃

t>0 ht(X) =

X \ Z. Then H̄∗+1
c (X \ Z) ∼= ˜̄H∗(Z) � it su�ces to consider the sets (ht(X))t>0 in the

place of balls (B(o,R))R>0 in the argument above, as the family {ht(X) : t > 0} is co�nal

in the family of all compact subsets of X \ Z.

Theorem 8.8 (Theorem IX; cf. [GO07, Main Theorem]). Let X be a non-compact

�nite-dimensional proper metric space that admits a ccc geodesic bicombing σ and a cocom-

pact group action via isometries. Then the reduced Alexander�Spanier cohomology group
˜̄Hdim ∂σX(∂σX) is non-zero.

Remark 8.9. Recall that in the proof of Theorem I in Section 2 we proved that for a

�nite-dimensional proper metric space that admits a ccc bicombing we have that dimXσ ≤
dimX. In particular, dim ∂σX < ∞, so the cohomology group ˜̄Hdim ∂σX(∂σX) in the

statement above is well-de�ned.

Remark 8.10 (cf. [GO07, below Remark 3]). If the action of the group, G, in the

statement above is geometric (i.e. it is additionally proper), then we have the isomorph-

ism H̄∗
c (X) ∼= H∗(G,ZG), which by Remark 8.7 gives the isomorphism ˜̄H∗(∂σX) ∼=

H∗+1(G,ZG). Indeed, by taking the nerve of a locally �nite open cover U of X by
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balls (of the same radius), such that U is closed under the action of G, one obtains a

simplicial complex K with a geometric (and simplicial) action of G, boundedly homo-

topic to the space X (see Lemma 8.3). Then by [Bro82, Exercise VIII.7.4] it follows that

H∗(G,ZG) ∼= H̄∗
c (K) ∼= H̄∗

c (X).

Proof. There is the following cohomological de�nition of dimension of a topological

space Y :

dimZ Y = sup{i ∈ N : (∃A ⊆ Y )(A is closed, H̄ i(Y,A) ̸= 0)}.

(Usually one uses the �ech cohomology in the above de�nition, but these coincide with

the Alexander�Spanier cohomology � see [Spa94, Corollary 6.8.8 and Exercise 6.D] or

[Dow52, Theorem 2].) The studies on (co)homological notions of dimension date back

to Alexandrov [Ale32]. The above de�nition of dimension coincides with the covering

dimension for separable metric spaces of �nite covering dimension, see e.g. [Eng78, below

Corollary 1.9.9].

Since the space Xσ is of �nite dimension (see Remark 8.9), the topological dimension

n of ∂σX is also �nite, therefore its cohomological dimension dimZ ∂σX is also n. Let d

be the largest number such that H̄d+1
c (X) ∼= ˜̄Hd(∂σX) ̸= 0 (recall Remark 8.7 for the

isomorphism). By considering the set A consisting of a single point (in the de�nition of

the cohomological dimension above), we have d ≤ n. Assume a contrario that d < n. Take

∅ ≠ A ⊆ ∂σX closed such that H̄n(∂σX,A) ̸= 0 (for the non-emptiness of A, one may use

the exact sequence of the pair (X,A) for n ≥ 1, or [Spa94, Theorem 6.4.5] for n = 0). Fix

a basepoint o ∈ X. By [GO07, Lemma 1], there exist open balls Bk ⊆ ∂σX \ A of radius

1/k (with respect to some metric on the boundary ∂σX, it does not matter which one)

for su�ciently large k ∈ N, and γ̄ ∈ ∂σX \ A, such that the balls Bk converge to γ̄, and

the maps H̄n(∂σX, ∂σX \Bk) → H̄n(∂σX,A) induced by inclusion are all non-zero.

The outline of the remaining part of the proof of the current theorem is as fol-

lows. Using the Coneo operation, one may deduce from the non-zeroness of the map

H̄n(∂σX, ∂σX \Bk) → H̄n(∂σX,A) for a su�ciently large k � where we have the set A

contained in a `very large' set ∂σX \Bk � that we have a similar situation in X, namely

that the map H̄n+1
c (X \ E) → H̄n+1

c (X \ D) induced by inclusion is non-zero for some

E,D ⊆ X such that a ball of large diameter around X \ E is contained in X \D. This,

however, contradicts Lemma 8.6(iv).

Now we proceed to the details. Let the set D be related to the set A as in the

statement of Lemma 8.2. Pick a constant t as guaranteed by Lemma 8.6(iv). Since

γ̄ ̸∈ A, by compactness of A and Proposition 2.1(ii), one may choose sγ̄ such that

d(ϱo,γ̄(sγ̄),Coneo(A)) ≥ t + 3. Since Bk converges to γ̄, one may choose k such that
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expo(Bk × {sγ̄}) ⊆ B(ϱo,γ̄(sγ̄), 1). Let B := Bk. De�ne

E := B(o, sγ̄) ∪ {x̄ ∈ Xσ : d(ϱo,x̄(sγ̄), ϱo,γ̄(sγ̄)) ≥ 1} ∪ Coneo(∂σX \B).

Observe that it is a closed set such that E ∩ ∂σX = ∂σX \ B. Furthermore, d(D ∩
X,X \ E) ≥ t + 1: take a ∈ Coneo(A) ∩ X and x ∈ X \ E; then d(x, o) > sγ̄, so by

conicality of σ we have that

d(a, x) ≥ d(σo,a(sγ̄/d(o, x)), σo,x(sγ̄/d(o, x))) = d(σo,a(sγ̄/d(o, x)), ϱo,x(sγ̄))

≥ d(σo,a(sγ̄/d(o, x)), ϱo,γ̄(sγ̄))− d(ϱo,γ̄(sγ̄), ϱo,x(sγ̄)) ≥ t+ 3− 1 = t+ 2;

the claim follows as D ∩X ⊆ B(Coneo(A) ∩X, 1).
We have the following diagram.

H̄n(∂σX ∪ E,E) H̄n+1(Xσ, ∂σX ∪ E)

H̄n(∂σX, ∂σX \B) H̄n+1
c (X \ E)

H̄n+1
c (B(X \ E, t+ 1))

H̄n(∂σX,A) H̄n+1
c (X \D)

0 = H̄n(Xσ, D) H̄n(∂σX ∪D,D) H̄n+1(Xσ, ∂σX ∪D) H̄n+1(Xσ, D) = 0

∼= ∼=

∼= ∼=
∼=

The upper and the lower rows are fragments of the exact sequences of the triples (Xσ, E∪
∂σX,E) and (Xσ, D ∪ ∂σX,D), respectively. In the lower row, the middle arrow is an

isomorphism, since D is a deformation retract of Xσ. The two long vertical arrows in the

middle are induced by the inclusion of triples (Xσ, D∪∂σX,D) ↪→ (Xσ, E∪∂σX,E). The
square on the left is the excision of X (the so-called strong excision property, see [Spa94,

Theorem 6.6.5]). The isomorphisms on the right follow by the fact that, in compact

spaces, the cohomology relative to a closed set may be identi�ed with the compactly

supported cohomology of its complement, see [Spa94, Lemma 6.6.11]. The vertical arrows

on the right follow from the inclusions X \ E ⊆ B(X \ E, t+ 1) ⊆ X \D.

We obtain a contradiction in the following way. The vertical arrow on the left is non-

zero by the assumption on the sets Bk for k ∈ N, therefore, moving step-by-step from the

left to the right, one shows that each vertical arrow in the diagram is also non-zero. In

particular, the map H̄n+1
c (X \ E) → H̄n+1

c (B(X \ E, t + 1)) is non-zero, which gives a

contradiction with the de�nition of the number t.

We note that the argument in the proof of the lemma below works also for the simplicial

cohomology.
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Lemma 8.11 (cf. [Ont05, Theorem A]). Let X be a proper non-compact metric space

that admits a ccc geodesic bicombing σ and a cocompact group action via isometries. If

any of the groups H̄ i
c(X) is non-zero, then X is almost σ-geodesically complete.

Proof. The proof [Ont05, Theorem A] can be adapted by changing each occurrence

of `(the unique) CAT(0)-geodesic (ray)' to `(the) σ-geodesic(/ray)'. In particular, the

objects: ℓα (which later on we call Lα, to avoid confusing it with the function ℓo from

De�nition 2.3), fp,s : X → X, and [p, x], [p, x0), where α is a σ-geodesic, p, x ∈ X, s > 0

and x0 ∈ ∂σX, become

(Lα =)ℓα = sup{t ∈ R : there exists a σ-geodesic of length t that extends α},

fp,s(x) = expp(x,max(d(p, x) − s, 0)), [p, x] = ϱp,x and [p, x0) = ϱp,x0 . The last two

notations will not be used further in this proof. The function fp,s is the key object in this

proof, and the value fp,s(x) can be described as the point reached in the following walk:

`starting in x, go backwards along the σ-geodesic that begins in p and ends in x, towards

p, with unit speed for time s, unless you reach p earlier � then stop'.

The outline is as follows. Assume that the space X is not almost σ-geodesically com-

plete; we shall show that then every element φ ∈ H i(X,X \ B(x,R)), where x ∈ X

and R > 0, is zero in H̄∗
c (X) (i.e. the image of φ under the canonical map is zero).

Fix a basepoint o ∈ X. The action of G on X via isometries induces an action of

G on H̄∗
c (X) via isomorphisms. Therefore, since the action of G on X is cocompact,

one may assume without loss of generality that the ball B(x,R) intersects no σ-ray ori-

ginating in o: the G-orbit of x is D-dense in X for some D > 0, and, as X is not

almost σ-geodesically complete, there exists x⊙ ∈ X such that B(x⊙, D+R) intersects no

σ-ray; let g be such that d(gx, x⊙) ≤ D; then g∗φ ∈ H̄ i(X,X \ B(gx,R)) is non-zero

in H̄∗
c (X) i� φ is, and B(gx,R) intersects no σ-ray. Using properness of X, one may

obtain that C := sup{Lϱo,x′
: x′ ∈ B(x,R)} is �nite: if there existed xn ∈ X such that

d(o, xn) → ∞ and tn ≤ d(o, xn) such that ϱo,xn(tn) ∈ B(x,R), then by compactness of

B(x,R) and Xσ, one could choose a subsequence xnk
convergent to some x̄ ∈ ∂σX such

that ϱo,xnk
(tnk

) → a for some a ∈ B(x,R); then a = limk ϱo,xnk
(tnk

) = ϱo,x̄(d(o, a)) (re-

call Proposition 2.4), which is a contradiction. Since the identity idX and the function

f o,C are boundedly homotopic, the (images under the canonical maps of the) elements

φ = (idX)
∗φ ∈ H̄ i(X,X \B(x,R)) and (f o,C)∗φ ∈ H̄ i(X,X \ (f o,C)−1(B(x,R))) are equal

in H̄ i
c(X), see [Spa94, Theorem 6.5.6]. Since the image of f o,C omits B(x,R), the latter

cohomology group is trivial. Therefore φ is trivial in H̄ i
c(X).

Proof. (of Theorem 8.1 (Thm. X)) Follows from Theorem 8.8 and Lemma 8.11,

and an application of the isomorphism considered in Remark 8.7.
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9. Problems and open questions

Below we collect and present some problems and open questions arising from this article,

which constitute a natural continuation of the topics of research discussed in this paper.

Q1. Does a counterpart of Theorem 4.1 (Thm. IV) hold for Helly groups? � that is:

does there exist a group acting an two Helly graphs such that the boundaries of their

injective hulls (recall the proof of Corollary II(ii)) are non-homeomorphic?

A discussion on adapting the example by Croke and Kleiner [CK00], used in the proof

of Theorem 4.1, to the Helly case is made in Remark 4.9(ii), where it is pointed out

that a problem lies in local non-Hellyness around diagonal gluing-lines � does a local

Helly�cation around such lines solve the problem?

Q2. Does there exist a group acting geometrically on more than two (especially, uncount-

ably many) injective metric spaces with pairwise non-homeomorphic boundaries?

A discussion on using the Wilson's approach [Wil05] to answer this question positively

is made in Remark 4.9(i).

Q3. May the second conclusion of Corollary 5.4 (Thm. V) not hold for a locally �nite

CAT(0) cube complex of arbitrary dimension? � that is: does there exist a locally

�nite CAT(0) cube complex X such that the boundaries of X endowed with the

(standard) CAT(0) piecewise-ℓ2 metric and the injective piecewise-ℓ∞ metric are non-

homeomorphic?

May the �rst conclusion of Corollary 5.4 not hold for a locally �nite CAT(0) cube

complex (of arbitrary dimension) that admits a cocompact group action? � that is:

does there exist a locally �nite CAT(0) cube complex X admitting a cocompact group

action such that the identity of X does not extend to a homeomorphism between the

boundary-compacti�cation of X endowed with the (standard) CAT(0) piecewise-ℓ2

metric and the boundary-compacti�cation of X endowed with the injective piecewise-

ℓ∞ metric?

A related discussion is made in Remark 5.10(i).

Q4. Do the results relating topological properties of boundaries of CAT(0) spaces and

algebraic properties of groups acting upon them, e.g. in the spirit of Swenson [Swe99]

or Papasoglu�Swensson [PS09], extend to the realm of spaces admitting ccc geodesic

bicombings? � for example: does the boundary of a ccc-bicombable space acted

upon geometrically by a 1-ended group have no cut-points? does the converse of

Proposition 7.1 (Prop. VII) hold, i.e. does a group acting geometrically on a ccc-
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bicombable space X split as an amalgamated product over a 2-ended subgroup when

the boundary of X has a local cut-point?

Q5. Describe the topology of boundaries of some examples of ccc-bicombable spaces acted

upon in a controlled way by a group. For example, the C(4)�T(4) small cancellation

groups and the FC-type Artin groups are Helly groups [Cha+24; HO21b], hence they

act geometrically on ccc-bicombable spaces (see Corollary II(ii)), which provides these

classes of groups with the �rst notion of boundary (of an associated space) known for

them.

72

72:73801



B Complete characterisations

of hyperbolic Coxeter groups

with Sierpi«ski curve boundary

and with Menger curve boundary

This part of the thesis is based on the paper [DK�24] by the author of this thesis, Michael

Kapovich and Jacek �wi¡tkowski, sharing the title with this part, which has just appeared

as an online-�rst article in Fundamenta Mathematicae. See the introduction to the thesis

for more details.

0. Introduction

0.1. Overview and context

It is a classical and widely open problem to characterise those word hyperbolic groups

whose Gromov boundary is homeomorphic to a given topological space. The complete

answers (for non-elementary hyperbolic groups) are known only for the Cantor set (vir-

tually free groups) and for the circle S1 (cocompact Fuchsian groups). For the sphere

S2 the expected answer is known as Cannon's Conjecture, and it remains open. Some

partial answers are known in the restricted frameworks. For example, Cannon's conjec-

ture is known to be true for Coxeter groups (we discuss this issue with more details in

Subsection 1.4). In this paper we deal with spaces known as the Sierpi«ski curve and the

Menger curve, providing complete characterisations of word hyperbolic Coxeter groups

for which these spaces appear as the Gromov boundaries.

Some partial results in this direction have been presented quite recently by several

authors. For example, P. Dani, M. Haulmark and G. Walsh in [DHW23] have shown that

for a word hyperbolic right-angled Coxeter groupW whose nerve L is 1-dimensional, ∂W is

homeomorphic to the Menger curve i� L is unseparable (i.e. connected, with no separating
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vertex and no separating pair of non-adjacent vertices) and non-planar. The third author

of the present paper, in [�wi16], characterised those word hyperbolic Coxeter groups with

Sierpi«ski curve boundary whose nerves are planar complexes. The �rst author in [Dan22]

provided a su�cient condition for the nerve of a word hyperbolic right-angled Coxeter

groupW , which can be applied to nerves of arbitrary dimension, under which the Gromov

boundary ∂W is the Menger curve.

This paper resulted from an observation (by the second author) that some results of

M. Bourdon and B. Kleiner from [BK13] can be applied to obtain the complete charac-

terisations, as presented below.

0.2. Results

Before stating our main result we need to recall some terminology and notation appearing

in its statement. The nerve of a Coxeter system (W,S) is the simplicial complex L =

L(W,S) whose vertex set is identi�ed with S and whose simplices correspond to those

subsets T ⊂ S for which the special subgroupWT is �nite. The labelled nerve L• of (W,S)

is the nerve L in which the edges are equipped with labels in such a way that any edge

[s, t] has label equal to the exponent mst from the standard presentation associated to

(W,S) (equivalently, mst is the appropriate entry of the Coxeter matrix of the system

(W,S)). Obviously, the labelled nerve of a Coxeter system carries the same information

as its Coxeter matrix. Note that the labelled nerve of the direct product of two Coxeter

systems is the simplicial join of the nerves of the two factors, where the labels at edges

of the joined complexes are preserved, and the labels at all `connecting' edges (i.e. edges

having endpoints in both joined complexes) are equal to 2. We call such a labelled

nerve the labelled join of the labelled nerves of the two factors. A Coxeter system is

called indecomposable if it cannot be expressed as a direct product of non-trivial Coxeter

systems. Observe that a Coxeter system is indecomposable i� its labelled nerve cannot

be expressed as a labelled join of two non-trivial labelled complexes.

We use the convention of speaking of topological or simplicial properties of labelled

nerves as of the properties of the corresponding underlying unlabelled nerves. The labelled

nerve of a Coxeter system is unseparable if it is connected, has no separating simplex, no

separating pair of non-adjacent vertices, and no separating labelled suspension (i.e. a full

subcomplex which is the labelled join of a simplex and a doubleton). The concept of

unseparability is useful because of the following characterisation of non-existence of a

splitting along a �nite or a 2-ended subgroup in a Coxeter group, due to Mihalik and

Tschantz [MT09]: the group W in a Coxeter system (W,S) has no non-trivial splitting

along a �nite or a 2-ended subgroup i� its labelled nerve is unseparable (see Subsection 1.2
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for more details).

Given a �nite simplicial complex K we de�ne its puncture-respecting cohomological

dimension, denoted as pcd(K), by the formula

pcd(K) := max{n : H
n
(K) ̸= 0 or H

n
(K \ σ) ̸= 0 for some σ ∈ S(K)},

where S(K) is the family of all closed simplices of K. This concept is useful for us due to

its role in a formula (by M. Davis) for the virtual cohomological dimension of a Coxeter

group, see Proposition 1.3 below, and its proof.

A 3-cycle is a triangulation of the circle S1 consisting of precisely 3 edges.

Our main result is the following.

Theorem I. Let (W,S) be an indecomposable Coxeter system such that W is in�nite

word hyperbolic, and let L• be its labelled nerve.

(i) The Gromov boundary ∂W is homeomorphic to the Sierpi«ski curve i� L• is unsep-

arable, planar (in particular, not a triangulation of S2), and not a 3-cycle.

(ii) The Gromov boundary ∂W is homeomorphic to the Menger curve i� L• is unseparable,

pcd(L•) = 1, and L• is not planar.

Remark II. (i) Recall that W is in�nite i� its nerve is not a simplex. Recall also

that word hyperbolicity of W has been characterised by G. Moussong (see [Mou88],

or Theorem 12.6.1 in [Dav08]) as follows: W is word hyperbolic i� it has no a�ne

special subgroup of rank ≥ 3, and no special subgroup which decomposes as the direct

product of two in�nite special subgroups.

(ii) One of the consequences of the above Moussong's characterisation of word hyperbol-

icity is as follows. A word hyperbolic in�nite Coxeter group decomposes (uniquely)

into the direct product of an in�nite indecomposable special subgroup (which is also

word hyperbolic) and a �nite special subgroup (possibly trivial). This allows to extend

Theorem 0.1 in the obvious way to Coxeter systems (W,S) which are not necessarily

indecomposable. Namely, conditions for the nerve L• have to be satis�ed up to the

labelled join with a simplex.

(iii) The above two remarks show that Theorem 0.1 actually yields a complete charac-

terisation (in terms of Coxeter matrices or labelled nerves) of those Coxeter systems

(W,S) for which W is word hyperbolic and its Gromov boundary ∂W is homeo-

morphic to the Sierpi«ski curve or to the Menger curve. We skip the straightforward

details of such characterisations.

Plan of the paper. In Section 1 we collect various (rather numerous) preparatory
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results, and in Section 2 we provide the main line of the argument of the proof of Theorem I

(which is relatively short).

More precisely, here is the structure of Section 1. In Subsection 1.1 we recall the

famous topological characterisations of the Sierpi«ski curve and of the Menger curve,

due to Whyburn [Why58] and to Anderson [And58], respectively. In Subsection 1.2 we

present a complete characterisation (in terms of labelled nerves) of those word hyperbolic

Coxeter groups whose Gromov boundary is connected and has no local cut-points. As we

explain, this characterisation is a more or less direct consequence of the results of Bowditch

[Bow98], Davis [Dav98; Dav08], and Mihalik and Tschantz [MT09]. In Subsection 1.3 we

present a useful formula for the topological dimension of the Gromov boundary of a

word hyperbolic Coxeter group, which is due to Davis [Dav98] and Bestvina and Mess

[BM91]. In Subsection 1.4 we recall a result of Bourdon and Kleiner [BK13], which

con�rms the Cannon's conjecture in the framework of word hyperbolic Coxeter groups.

In Subsection 1.6 we discuss another result, which is implicit in the paper [BK13] by

Bourdon and Kleiner, namely the fact that if the Gromov boundary of an indecomposable

word hyperbolic Coxeter group is the Sierpi«ski curve then the nerve of the corresponding

Coxeter system is a planar simplicial complex. Since the arguments for this fact provided

in [BK13] are extremely sketchy, we include an extended exposition of its proof. In

particular, in this exposition we refer to some auxiliary result from combinatorial group

theory, which we state and prove in Subsection 1.5, and for which we couldn't �nd an

appropriate reference in the literature.

The proof of Theorem I provided in Section 2 is split into separate parts concerning the

Menger curve and the Sierpi«ski curve. It uses all the preparatory results from Section 1.

Acknowledgements. The �rst author was partially supported by (Polish) Narodowe

Centrum Nauki, grant no 2020/37/N/ST1/01952. The third author was partially suppor-

ted by (Polish) Narodowe Centrum Nauki, grant no UMO-2017/25/B/ST1/01335.

1. Preliminaries and preparations

In this section we collect various useful results from the literature (or some more or less

direct consequences of such results), and few other preparatory observations. We will

refer to all these results in our main arguments in Section 2.
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1.1. Characterisations of the Sierpi«ski curve and of the Menger

curve

By a result of Whyburn [Why58], the Sierpi«ski curve is the unique metrisable topolo-

gical space which is compact, connected, locally connected, 1-dimensional, without local

cut-points and planar. A somewhat similar result of Anderson [And58] characterises the

Menger curve as the unique compact metrisable space which is connected, locally con-

nected, 1-dimensional, has no local cut-points, and is nowhere planar (nowhere planarity

means that no open subset of the space is planar).

By referring to the above characterisations, the second author and B. Kleiner made in

their paper [KK00] the following observation.

Proposition 1.1 (M. Kapovich and B. Kleiner [KK00]). Let G be a word hyperbolic

group, and suppose that its Gromov boundary ∂G is connected, 1-dimensional, and has

no local cut-points. Then ∂G is homeomorphic either to the Sierpi«ski curve or to the

Menger curve.

1.2. Connectedness and non-existence of local cut-points in the

Gromov boundary ∂W

It is a well known fact that once a hyperbolic group is 1-ended then its Gromov boundary

is not only connected, but also locally connected (see e.g. Theorem 7.2 in [KB02]). This

allows to discuss existence of local cut-points in the boundary. As far as this issue, we

have the following observation, which probably belongs to folklore.

Proposition 1.2. Let (W,S) be a Coxeter system, and let L• be its labelled nerve.

Suppose also that the group W is in�nite and word hyperbolic. Then the Gromov boundary

∂W is connected and has no local cut-points i� L• is unseparable and not a 3-cycle.

Proof. Step 1. Since connectedness of the boundary ∂W is equivalent to 1-endedness

ofW , by Theorem 8.7.2 in [Dav08] we get that ∂W is connected i� the nerve L is connected

and has no separating simplex.

Step 2. By Theorem 8.7.3 in [Dav08], a Coxeter group is 2-ended i� it decomposes as

the direct product of its in�nite dihedral special subgroup and its �nite (possibly trivial)

special subgroup. Equivalently, a Coxeter group is 2-ended i� its labelled nerve is either

a doubleton or a labelled suspension (as de�ned in the introduction).

As a consequence of the above, if the groupW is 1-ended, non-existence of a separating

pair of non-adjacent vertices and of a separating labelled suspension (in the labelled nerve
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L•) means exactly that W does not visually split (in the sense of the paper [MT09] by

Mihalik and Tschantz) over a 2-ended subgroup. More precisely, this means that W

cannot be expressed as an essential free product of its two special subgroups, amalgamated

along a 2-ended special subgroup. It follows from the main result of the same paper

[MT09] that non-existence of a separating pair of non-adjacent vertices and of a separating

labelled suspension in L• is equivalent to the fact thatW does not split along any 2-ended

subgroup.

Step 3. By a result of Bowditch [Bow98], the Gromov boundary ∂G of a 1-ended

hyperbolic group G has no local cut-point i� G has no splitting along a 2-ended subgroup

and is not a cocompact Fuchsian group. By a result of Davis (see Theorem B in [Dav98]

or Theorem 10.9.2 in [Dav08]), a Coxeter group is a cocompact Fuchsian group i� its

nerve is either a triangulation of S1 or the group splits as the direct product of a special

subgroup with the nerve S1, and another special subgroup, which is �nite. It follows from

these two results, and from the conclusion of Step 2, that the Gromov boundary ∂W of a

1-ended word hyperbolic Coxeter group W has no local cut-point i� its labelled nerve L•

has no separating pair of non-adjacent vertices, no separating labelled suspension, and is

not a 3-cycle.

Step 4. Proposition 1.2 follows by combining the observations of Steps 1 and 3.

1.3. Topological dimension of the Gromov boundary ∂W

Recall that, given a �nite simplicial complex K we have de�ned (in the introduction) its

puncture-respecting cohomological dimension, denoted as pcd(K), by the formula

pcd(K) := max{n : H
n
(K) ̸= 0 or H

n
(K \ σ) ̸= 0 for some σ ∈ S(K)},

where S(K) is the family of all closed simplices of K. The role of this concept for our

considerations in this paper comes from the following observation.

Proposition 1.3. Let (W,S) be a Coxeter system, and let L be its nerve. Suppose also

that the group W is word hyperbolic. Then

dim ∂W = pcd(L).

Proof. Denote by vcd(W ) the virtual cohomological dimension of W . It follows from

results of Mike Davis that vcd(W ) = pcd(L) + 1 (see Corollary 8.5.5 in [Dav08]). On

the other hand, by the result of M. Bestvina and G. Mess [BM91], we have vcd(W ) =

dim ∂W + 1, hence the proposition.
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1.4. Cannon's conjecture for Coxeter groups

The following result has been proved using quite advanced methods by M. Bourdon and

B. Kleiner in [BK13], and its short proof as presented below (indicated by M. Davis) has

been also outlined in the same paper. We include this short proof for completeness (since

our statement, being convenient for our applications, is not identical to that in [BK13]),

and for reader's convenience.

Proposition 1.4. Let (W,S) be an indecomposable Coxeter system, and let L be its

nerve. Suppose also that the group W is word hyperbolic. Then the following conditions

are equivalent:

(i) ∂W ∼= S2,

(ii) L is a triangulation of S2,

(iii) W acts properly discontinuously and cocompactly, by isometries, as a re�ection group,

on the hyperbolic space H3.

Proof. We justify the implications (i)⇒(ii)⇒(iii)⇒(i).

The (i)⇒(ii) implication. By result of M. Bestvina and G. Mess (Corollary 1.3(c)

in [BM91]), if ∂W ∼= S2 then W is a virtual Poincaré duality group of dimension 3. By

result of M. Davis (Theorem 10.9.2 in [Dav08]), the nerve L is then a triangulation of S2

(here we use the assumption of indecomposability).

The (ii)⇒(iii) implication. This implication follows by applying Andreev's theorem

(see [And70], or Theorem 6.10.2 in [Dav08]) to the dual polyhedron of the triangulation.

The (iii)⇒(i) implication. By the assumptions on W in condition 3, we obviously

have ∂W = ∂H3, and the implication follows from the fact that ∂H3 ∼= S2.

For the later arguments of this paper we only need the implication (i)⇒(ii).

1.5. An observation from combinatorial group theory

Let Γ be an arbitrary group and Hi for 1 ≤ i ≤ n be a collection of its (not necessarily

pairwise distinct) subgroups. In this subsection we describe two group operations asso-

ciated to this data, and discuss the relationship between the groups obtained by these

operations. This observation (Lemma 1.7 below) will be useful in the argument in Sub-

section 1.6.

In the next de�nition we describe the �rst of the two operations, which the second

author and B. Kleiner call the double of Γ with respect to the tuple (Hi) (see [KK00]).
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Definition 1.5. Given a group Γ and a �nite tuple of its subgroups (Hi), the double

Γ ⃝⋆ Γ is the fundamental group π1G of the graph of groups G described as follows. The

underlying graph of G consists of two vertices v and v′ and n edges e1, . . . , en each of which

has both v and v′ as its endpoints. The vertex groups at v and v′ are both identi�ed with

Γ while the edge group at any edge ei is identi�ed with Hi. The structure homomorphisms

are all taken to be the inclusions.

Let Γ = ⟨S|R⟩, and let Γ′ = ⟨S ′|R′⟩ be a second copy of Γ (given by the same

presentation). Denote byWHi
the set of words over S ∪ S−1 that represent elements of

the subgroup Hi and for a word w over S ∪S−1 let w′ be the word over S ′∪S ′−1 obtained

from w by substituting each letter with its counterpart from S ′ ∪S ′−1. Note that (e.g. by

De�nition 7.3 in [DD89]), the double Γ⃝⋆ Γ can be also described as follows. Consider an

auxiliary group P = P (Γ, (Hi)) given by the presentation〈
S ⊔ S ′ ⊔ {ui : 1 ≤ i ≤ n}

∣∣R ∪R′ ∪ {hiui = uih
′
i : 1 ≤ i ≤ n, hi ∈WHi

}
〉
.

Then Γ ⃝⋆ Γ is a subgroup of P consisting of all elements p such that there exists an

expression p = w0ui1w1u
−1
i2
w2 . . . w2m−1u

−1
i2m
w2m for some m ≥ 0, 1 ≤ ik ≤ n and words

wk over S ∪ S−1 and S ′ ∪ S ′−1 for even and odd k respectively.

The second of the group operations is given in the following.

Definition 1.6. Given a group Γ = ⟨S|R⟩ and a �nite tuple of its subgroups (Hi), the

mirror double Γ̃ of the group Γ with respect to the tuple (Hi), is the group given by the

presentation

Γ̃ :=
〈
S ⊔ {si : 1 ≤ i ≤ n}

∣∣
R ∪ {s2i = 1 : 1 ≤ i ≤ n} ∪ {hisi = sihi : 1 ≤ i ≤ n, hi ∈WHi

}
〉
.

Observe that the mirror double is (up to isomorphism) independent of the presentation

of Γ used in the de�nition above.

Lemma 1.7. For each group Γ and any �nite tuple of its subgroups (Hi) the double Γ⃝⋆ Γ

is isomorphic to an index 2 subgroup of the mirror double Γ̃.

Remark. The concepts of a double Γ⃝⋆Γ and a mirror double Γ̃ are well known e.g. in the

context of compact hyperbolic manifolds, M , with non-empty totally geodesic boundary

∂M . If we take Γ = π1M , and if subgroups Hi < Γ correspond to the fundamental groups

of the boundary components, the double Γ ⃝⋆ Γ is the fundamental group of the double

DM of the manifoldM along ∂M . In the same situation, the mirror double Γ̃ corresponds

to the fundamental group of the orbifold OM with the underlying space M , in which the

local groups at the boundary are the groups of order 2 representing geometrically local
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re�ections. Since the double DM is obviously a degree 2 covering of the orbifold OM

(in the orbifold sense), the assertion of Lemma 1.7 is obvious in this situation. The full

statement of Lemma 1.7 is just a group theoretic extension of that observation (which

could be also given a geometrical sense).

Proof. Consider the homomorphism ρ : P → Γ̃ given by ρ(s) = ρ(s′) = s for each s ∈ S,

and ρ(ui) = si for each 1 ≤ i ≤ n. Consider also the homomorphism σ : Γ̃ → Z2 given

by σ(s) = 0 for s ∈ S, and σ(si) = 1 for 1 ≤ i ≤ n. It su�ces to show that ρ restricts

to an isomorphism between Γ ⃝⋆ Γ and kerσ, which is an index 2 subgroup of Γ̃. It is

easy to check that ρ(Γ⃝⋆ Γ) = kerσ, so it remains to show that ρ|Γ⃝⋆Γ is injective. To this

end we introduce the following lift function ℓ : kerσ → Γ ⃝⋆ Γ. For an element ξ ∈ kerσ,

and for its any expression by a word of the form w0s
ϵ1
i1
w1s

ϵ2
i2
· . . . ·w2m−1s

ϵ2m
i2m
w2m for some

(possibly empty) words wi over the alphabet S ∪ S−1, ϵj ∈ {−1, 1} and for 1 ≤ ij ≤ n,

put ℓ(ξ) := w0ui1w
′
1u

−1
i2

· . . . ·w′
2m−1u

−1
i2m
w2m. The map ℓ is well de�ned, since it is easy to

check that for each word

U = w0s
ϵ1
i1
w1s

ϵ2
i2
· . . . · w2m−1s

ϵ2m
i2m
w2m,

and for each elementary operation consisting of inserting at an arbitrary place in U (or

deleting) a subword of the form a−1a for some letter a, or a relator (in Γ̃) or inverse of

such, resulting in the word Û , the words representing ℓ(U) and ℓ(Û) in the de�nition of ℓ

di�er by an analogous elementary operation (in P ). Moreover, since we then clearly have

that ℓ ◦ ρ|Γ⃝⋆Γ = idΓ⃝⋆Γ, we conclude that ρ|Γ⃝⋆Γ is injective, hence the lemma.

1.6. Planarity of nerves

We recall the following rather easy observation from the paper [�wi16] written by the

third author of the present paper.

Lemma 1.8 (J. �wi¡tkowski, Lemma 1.3 in [�wi16]). If the nerve L of a word hyper-

bolic Coxeter group W is a planar complex then the Gromov boundary ∂W is a planar

topological space.

The converse implication is not true in general [DHW23], but it does hold in an im-

portant special case. This is the contents of the next result which appears implicitly

as Corollary 7.5 in [BK13]. The proof given below is an expansion of a rather sketchy

argument provided in [BK13].

Proposition 1.9. Let (W,S) be an indecomposable Coxeter system such that the group

W is word hyperbolic. If the Gromov boundary ∂W is homeomorphic to the Sierpi«ski

curve then the nerve L of the system (W,S) is a planar simplicial complex.
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Proof. We will embed the group W , as a special subgroup, in some larger indecompos-

able and word hyperbolic Coxeter group W̃ such that ∂W̃ ∼= S2. The assertion will follow

then from the implication (i)⇒(ii) in Proposition 1.4.

We start by recalling some facts established in the paper [KK00] by the second author

and B. Kleiner. First, the Sierpi«ski curve contains the family of topologically well distin-

guished pairwise disjoint subsets homeomorphic to S1, called peripheral circles. Moreover,

in its action on ∂W the group W maps peripheral circles to peripheral circles. A setwise

stabiliser of each peripheral circle in ∂W , called a peripheral subgroup of W , is a quasi-

convex subgroup of W for which the circle is its limit set, and consequently each such

stabiliser is a cocompact Fuchsian group. The action of W on the family of peripheral

circles in ∂W has �nitely many orbits, and thus we have �nitely many conjugacy classes

of peripheral subgroups in W .

Claim. Each peripheral subgroup of W is a conjugate of some special subgroup of W .

To prove this claim we need some terminology and notation as in Section 5.1 in [BK13].

For a generator s ∈ S, the wallMs is the set of setwise s-stabilised open edges of Cay(W,S)

(the Cayley graph of W with respect to the set of generators S). Then Cay(W,S) \Ms

consists of two connected components H−(Ms) and H+(Ms). For a generator s ∈ S and

for an arbitrary element g ∈ W we consider the re�ection r := gsg−1, its wall Mr := gMs

and components H−(Mr) and H+(Mr) of Cay(W,S)\Mr. The components are closed and

convex subsets of Cay(W,S) and ∂H−(Mr) ∪ ∂H+(Mr) = ∂W , ∂H−(Mr) ∩ ∂H+(Mr) =

∂Mr and r pointwise stabilises ∂Mr.

Proof. In view of De�nition 5.4 and Theorem 5.5 in [BK13] it su�ces to show that for each

peripheral circle F and each re�ection r such that ∂H−(Mr)∩F and ∂H+(Mr)∩F are non-

empty, it holds that F is setwise stabilised by r. Since (∂H−(Mr)∩F )∪(∂H+(Mr)∩F ) =
∂W ∩F = F , by connectedness of F ∼= S1, we have that ∅ ≠ (H−(∂Mr)∩F )∩(H+(∂Mr)∩
F ) = ∂Mr ∩ F . Since ∂Mr is pointwise stabilised by r, rF ∩ F ̸= ∅, and, �nally, rF = F

by the fact that each element of W maps peripheral circles to peripheral circles.

Coming back to the proof of Proposition 1.9, denote by Hi : 1 ≤ i ≤ n a set of

representatives of the conjugacy classes of peripheral subgroups ofW consisting of special

subgroups of W . For each 1 ≤ i ≤ n, denote by Li the nerve of Hi, and view it as a

subcomplex of the nerve L of W . We will discuss below the double W ⃝⋆ W and the

mirror double W̃ of W with respect to the tuple (Hi) (see Subsection 1.5). As it is

shown in [KK00], the double W ⃝⋆ W is a hyperbolic group and its Gromov boundary is

homeomorphic to S2. Observe also that the mirror double W̃ is (isomorphic to) a Coxeter

group with nerve L̃ obtained from the nerve L of W by adding a simplicial cone over each
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of the subcomplexes Li. Moreover, since each Hi is a proper special subgroup of W ,

indecomposability of W implies indecomposability of W̃ . By Lemma 1.7, the group W̃

contains W ⃝⋆ W as a subgroup of index 2, and hence it is also word hyperbolic and its

Gromov boundary is homeomorphic to S2. By Proposition 1.4, L̃ is then a triangulation of

S2. Since L is clearly a proper subcomplex of L̃, it is necessarily planar, which completes

the proof of Proposition 1.9.

2. Proof of the main theorem

2.1. Sierpi«ski curve boundary

In this rather short subsection we prove part (i) of Theorem I.

The =⇒ implication. Suppose that ∂W is homeomorphic to the Sierpi«ski curve.

Then, in view of the fact that the Sierpi«ski curve is connected and has no local cut-points,

it follows from Proposition 1.2 that L• is unseparable and not a 3-cycle. Moreover, by

Proposition 1.9, L is then a planar simplicial complex, which completes the proof.

The ⇐= implication. As any Gromov boundary of a hyperbolic group, ∂W is a

compact metrisable space. Since L is planar, it follows from Lemma 1.8 that ∂W is a

planar space. Since L• is unseparable and not a 3-cycle, it follows from Proposition 1.2

that ∂W is connected, locally connected, and has no local cut-point. Finally, it is not

hard to see that since L is planar, connected, has no separating simplex, and does not

coincide with a single simplex, its puncture-respecting cohomological dimension pcd(L) is

equal to 1. Consequently, due to Proposition 1.3, ∂W has topological dimension 1. Thus,

by Whyburn's characterisation recalled in Subsection 1.1, ∂W is homeomorphic to the

Sierpi«ski curve, as required.

2.2. Menger curve boundary

We now pass to the proof of part (ii) of Theorem I.

The =⇒ implication. Suppose that ∂W is homeomorphic to the Menger curve.

Then, in view of the fact that the Menger curve is connected and has no local cut-

points, it follows from Proposition 1.2 that L• is unseparable. Since the Menger curve

has topological dimension 1, it follows from Proposition 1.3 that pcd(L) = 1. Since the

Menger curve is not planar, it follows from Lemma 1.8 that L is also not planar, and this

completes the proof of the �rst implication.

83

83:42292



The ⇐= implication. The boundary ∂W is obviously a compact metrisable space.

Since L• is not planar, not a 3-cycle, and since L• is unseparable, it follows from Pro-

position 1.2 that ∂W is connected, locally connected, and has no local cut-point. Since

pcd(L) = 1, it follows that ∂W has topological dimension 1. In view of the above prop-

erties, it follows from Proposition 1.1 that ∂W is homeomorphic either to the Sierpi«ski

curve or to the Menger curve. However, since L is not planar, it follows from Proposi-

tion 1.9 that ∂W cannot be homeomorphic to the Sierpi«ski curve. Consequently, it must

be homeomorphic to the Menger curve, as required.
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