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Let X be a Gaussian random vector N(ξ,Σ) on Rp

(we consider p variables X1, . . . , Xp)

with unknown mean ξ and covariance Σ

We dispose of a sample X(1), X(2), ..., X(n) of X.

We want to estimate:

the unknown mean ξ

the unknown covariance Σ.
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CLASSICAL CASE that you know after a course in
multivariate statistics: no information on conditional
independence between Xi’s.
(saturated graphical model, complete graph G)

The maximum likelihood estimators are well known:

for the mean ξ, the empirical mean ξ̂ = X̄

for the covariance Σ, the empirical covariance

Σ̃ =
1

n

n∑
i=1

(X(i) − X̄)(X(i) − X̄)T

These maximum likelihood estimators exist if and only if
the matrix Σ̃ is strictly positive definite. This happens
with probability 1 if n > p and never if n ≤ p.
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Σ̃ has a Wishart law on the matrix cone Sym+(p,R).

This is a matrix analog of KHI2 law χ2
n−1 sur R+ for

p = 1.

( C is a cone if x ∈ C ⇒ ∀t > 0 tx ∈ C)
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GAUSSIAN GRAPHICAL MODEL CASE

Estimation under conditional independence between Xi’s.

(graphical model with non-complete graph G)

Let V = {1, . . . , p} and let G = (V,E) be an undirected

graph.

Let S(G) = {Z ∈ Sym(p× p)| i 6∼ j ⇒ Zij = 0}
S(G) is the space of symmetric p×p matrices with oblig-

atory zero terms Zij = 0 for i 6∼ j

Let S+(G) = Sym+(p,R) ∩ S(G) be the open cone of

positive definite matrices with obligatory zero terms

Zij = 0 for i 6∼ j.
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Example 1. (Simpson paradox) X1 ⊥⊥ X2 | X3

X1 and X2 are conditionally independent knowing X3

Graphe G : 1 3 2

The precision matrix K = Σ−1 has obligatory zeros

κ12 = κ21 = 0

K ∈


x11 0 x31

0 x22 x32
x31 x32 x33

 |x11, x22, x31, x32, x33 ∈ R

∩Sym+(3)

K ∈ S+(G) is a supplementary restriction to the MLE

problem

6



Example 2. Nearest neighbours interaction graph A4

Graphe G : 1 2 3 4

K ∈



x11 x21 0 0
x21 x22 x32 0
0 x32 x33 x43
0 0 x43 x44

 |x11, . . . , x44 ∈ R

∩Sym
+(4)

K ∈ S+(G) is a supplementary restriction to the MLE

problem
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GAUSSIAN GRAPHICAL MODEL G
Conditional independence case

n-sample of X ⇒ estimation of parameters ξ,Σ of X

In order to formulate the MLE formula, we need the

natural projection πG : Sym→ S(G)

This projection puts 0 instead of xij when i 6∼ j in G.

Example 1.(Simpson paradox) G : 1 3 2

πG(

x11 x21 x31
x21 x22 x32
x31 x32 x33

) =

x11 0 x31
0 x22 x32
x31 x32 x33


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Sample X(1), . . . , X(n); each X(i) ∈ Rp

A natural candidate to estimate Σ is (when n > p)

Σ̃ =
1

n

n∑
i=1

(X(i) − X̄)(X(i) − X̄)T

but it does not take into account the restriction

K = Σ−1 ∈ S+(G)
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MLE Theorem. Let the graph G = (V,E) govern

the Gaussian graphical model X = (Xv)v∈V ∼ Np(ξ,Σ),

with precision matrix K = Σ−1 ∈ S+(G). Consider an

n-sample X(1), . . . , X(n) of X ∈ Rp with n > p = |V |.
The MLE of the mean is ξ̂ = X̄.

The MLE K̂ ∈ S+(G) of the precision matrix is the

unique solution of the equation

πG(K̂−1) = πG(Σ̃), (1)

where Σ̃ is the sample covariance:

Σ̃ =
1

n

n∑
i=1

(X(i) − X̄)(X(i) − X̄)T

The MLE Σ̂ of Σ is given by Σ̂ = K̂−1.
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Proof. Simplified case: known zero mean ξ = 0.

X = (X1, . . . , Xp)
T : random vector obeying N(0,Σ)

with unknown covariance matrix Σ ∈ Sym+(p)

such that K = Σ−1 ∈ S+(G)
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The likelihood (density) function of the sample

X(1), . . . , X(n) equals:

f(x(1), . . . , x(n);K) =

=
∏n
k=1{(2π)−p/2(detK)1/2 exp(−x(k)TKx(k)/2)}

= (2π)−pn/2(detK)n/2 exp(−
∑n
k=1 x

(k)TKx(k)/2)

Note that the real number in the exponent equals its

trace. We use the formula tr(Al×mBm×l) = tr(Bm×lAl×m) :

n∑
k=1

x(k)TKx(k) = tr (
n∑

k=1

x(k)x(k)T )K =
〈
nΣ̃,K

〉
where < R,S > is the usual scalar product of two sym-

metric matrices < R,S >=
∑
i,j rijsij.
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We explain it on an example 2× 2:

〈(
a b
b c

)
,

(
A B
B C

)〉
= aA+ bB + bB + cC

trace

(
a b
b c

)(
A B
B C

)
= (aA+ bB) + (bB + cC)
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f(x(1), . . . , x(n);K) = (2π)−
pn
2 (detK)

n
2 exp(−1

2

〈
nΣ̃,K

〉
)

Because of K ∈ S+(G),
〈
nΣ̃,K

〉
=
〈
πG(nΣ̃),K

〉
.

(recall that K has obligatory zeros when i 6∼ j
and πG = projection on S(G))
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We explain it on the example 3×3 of Simpson paradox

〈x11 x21 x31
x21 x22 x32
x31 x32 x33

 ,
κ11 0 κ31

0 κ22 κ32
κ31 κ32 κ33

〉 =

〈x11 0 x31
0 x22 x32
x31 x32 x33

 ,
κ11 0 κ31

0 κ22 κ32
κ31 κ32 κ33

〉
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Which K ∈ S+(G) is most likely?

Maximum Likelihood Estimation ⇒
it is K = K̂ for which f(x(1), . . . , x(n); K̂) is maximum

⇐⇒ log f(x(1), . . . , x(n); K̂) is maximum

⇐⇒ gradK log f(x(1), . . . , x(n); K̂) = 0.
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We study as a function of K ∈ S+(G)

log f(x(1), . . . , x(n);K) = c+
n

2
log detK −

n

2

〈
πG(Σ̃),K

〉
For M invertible p× p real matrix we have
grad log detM = M−1

(EXERCISE: prove this derivation formula)

K ∈ S+(G), so gradK does not contain ∂
∂κij

for i 6∼ j

0 = gradK log f(x(1), . . . , x(n);K) =
n

2
(πG(K−1)− πG(Σ̃))

Equation (1) is obtained: πG(K̂−1) = πG(Σ̃) .

The existence and unicity of a solution K̂ are ensured
for n ≥ p (when EX is not given, for n > p)
by a convexity argument (omitted). �
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Example 1.(Simpson paradox) G : 1 3 2
The graph G governs the model.

Suppose that n > 3 and the sample covariance matrix

equals Σ̃ =

 1 0.5 1
0.5 2 2
1 2 3

. (check that Σ̃ >> 0)

We have (Σ̃−1)12 = −0.5× (−0.5) = 0.25

so Σ̃−1 6∈ S(G) (terms12 should be 0 for matrices in

S(G).). Thus Σ̃ 6= Σ̂.
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We apply the MLE Theorem.

πG(Σ̃) =

1 0 1
0 2 2
1 2 3

. In order to find Σ̂, we need to find

x such that Σx =

1 x 1
x 2 2
1 2 3

 ∈ Sym+ and Σ−1
x ∈ S(G).

PLEASE DO IT NOW!

19



Σx ∈ Sym+ ⇔ 2 > x2 and det Σx = 4x− 3x2 > 0⇔ 0 <

x < 4
3.

The condition Σ−1
x ∈ S(G) (terms12 should be 0) gives

det

(
x 1
2 3

)
= 0, so x = 2

3. By MLE Theorem

Σ̂ = Σ2
3

=

1 2
3 1

2
3 2 2
1 2 3


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In practice, when n > p, we proceed as follows:

1. We compute the empirical covariance Σ̃ from the
sample X(1), . . . , X(n).
We do the projection πG(Σ̃).

2. We must find K̂ ∈ S+(G) such that πG(K̂−1) = πG(Σ̃).

This is a highly non-trivial step. The Theorem says
that a unique solution exists, but does not say how
to find it.

This question is trivial only when G=complete graph.
(Then πG = id and K̂ = Σ̃−1)

3. Once 2. solved, we compute Σ̂ := K̂−1.
(For G complete we find the well known MLE Σ̂ = Σ̃)
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• An explicit solution of the Likelihood Equation (1)

πG(K−1) = πG(Σ̃) is known on decomposable (also

called chordal or triangulated) graphs.

It is expressed by the Lauritzen map.

• On any graphical model, in order to find approxima-

tively a solution of (1), one can perform the

Iterative Proportional Scaling (IPS) algorithm,

which is infinite on non-decomposable graphs.
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**Decomposable graphs roughly means decompos-

able into complete subgraphs connected by complete

separators.

The smallest non-decomposable graph is the square

•1 •2

•4 •3

.

The Likelihood Equation πG(K−1) = πG(Σ̃) is in 2 vari-

ables and it leads to a fifth degree equation in x which

would be solvable for particular values of πG(Σ̃) only.
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**TOWARDS BAYESIAN METHODS

In Bayesian statistics, we need to propose a prior law

on the precision matrix K. The law of MLE may be
naturally proposed as a prior law.

• the random matrix π(Σ̃) ∈ πG(Sym+(p)) obeys Wishart
law on the cone πG(Sym+(p)).

• the random matrix K ∈ S+(G) such that the Likeli-
hood Equation πG(K−1) = πG(Σ̃) holds obeys Wishart
law on the cone S+(G).

Harmonic (Laplace) analysis on the convex cones is
needed to study these Wishart laws (e.g. the density)
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The formula for sample density

f(x(1), . . . , x(n);K) = (2π)−
pn
2 (detK)

n
2 exp(−1

2

〈
nΣ̃,K

〉
)

suggests using as a prior distribution of K the law with

density

K → C(detK)
s
2e−

1
2tr(Kθ), K ∈ S+(G)

where θ ∈ πG(Sym+(p)), i.e. only the terms (θij)i∼j are

essential. This is a Diaconis-Ylvisaker prior for K.

The computation of the normalizing constant C is cru-

cial for Bayes methods (and uneasy!)
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