MODELE GRAFICZNE

Piotr GRACZYK

5. MAXIMUM LIKELIHOOD ESTIMATION

Let X be a Gaussian random vector $N(\xi, \Sigma)$ on \mathbb{R}^p

(we consider p variables X_1, \ldots, X_p)

with unknown mean ξ and covariance Σ

We dispose of a sample $X^{(1)}, X^{(2)}, ..., X^{(n)}$ of X.

We want to **estimate**:

the unknown mean ξ

the unknown covariance Σ .

CLASSICAL CASE that you know after a course in multivariate statistics: no information on conditional independence between X_i 's.

(saturated graphical model, complete graph G)

The maximum likelihood estimators are well known:

for the mean ξ , the empirical mean $\hat{\xi} = \bar{X}$

for the covariance Σ , the empirical covariance

$$\tilde{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (X^{(i)} - \bar{X})(X^{(i)} - \bar{X})^{T}$$

These maximum likelihood estimators exist if and only if the matrix $\tilde{\Sigma}$ is **strictly** positive definite. This happens with probability 1 if n > p and never if $n \le p$.

 $\tilde{\Sigma}$ has a Wishart law on the matrix cone Sym⁺ (p,\mathbb{R}) .

This is a matrix analog of KHI² law χ^2_{n-1} sur \mathbb{R}^+ for p=1.

(C is a cone if $x \in C \implies \forall t > 0$ $tx \in C$)

GAUSSIAN GRAPHICAL MODEL CASE

Estimation under conditional independence between X_i 's. (graphical model with non-complete graph \mathcal{G})

Let $V = \{1, ..., p\}$ and let $\mathcal{G} = (V, E)$ be an undirected graph.

Let $S(G) = \{Z \in Sym(p \times p) | i \not\sim j \Rightarrow Z_{ij} = 0\}$ S(G) is the space of symmetric $p \times p$ matrices with **obligatory zero terms** $Z_{ij} = 0$ for $i \not\sim j$

Let $S^+(\mathcal{G}) = Sym^+(p,\mathbb{R}) \cap S(\mathcal{G})$ be the open cone of positive definite matrices with obligatory zero terms $Z_{ij} = 0$ for $i \not\sim j$.

Example 1. (Simpson paradox) $X_1 \perp \!\!\! \perp X_2 \mid X_3$ X_1 and X_2 are conditionally independent knowing X_3

Graphe
$$\mathcal{G}: 1$$
—3—2

The precision matrix $K = \Sigma^{-1}$ has **obligatory zeros** $\kappa_{12} = \kappa_{21} = 0$

$$K \in \left\{ \begin{pmatrix} x_{11} & 0 & x_{31} \\ 0 & x_{22} & x_{32} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} \middle| x_{11}, x_{22}, x_{31}, x_{32}, x_{33} \in \mathbb{R} \right\} \cap Sym^{+}(3)$$

 $K \in \mathcal{S}^+(\mathcal{G})$ is a supplementary restriction to the MLE problem

Example 2. Nearest neighbours interaction graph A_4

Graphe \mathcal{G} : 1——2——3——4

$$K \in \left\{ \begin{pmatrix} x_{11} & x_{21} & 0 & 0 \\ x_{21} & x_{22} & x_{32} & 0 \\ 0 & x_{32} & x_{33} & x_{43} \\ 0 & 0 & x_{43} & x_{44} \end{pmatrix} \middle| x_{11}, \dots, x_{44} \in \mathbb{R} \right\} \cap Sym^{+}(4)$$

 $K \in \mathcal{S}^+(\mathcal{G})$ is a supplementary restriction to the MLE problem

GAUSSIAN GRAPHICAL MODEL G

Conditional independence case

n-sample of $X \Rightarrow$ estimation of parameters ξ, Σ of X

In order to formulate the MLE formula, we need the natural **projection** $\pi_{\mathcal{G}}: Sym \to \mathcal{S}(\mathcal{G})$

This projection puts 0 instead of x_{ij} when $i \not\sim j$ in \mathcal{G} .

Example 1.(Simpson paradox) \mathcal{G} : 1——3——2

$$\pi_{\mathcal{G}}\begin{pmatrix} x_{11} & x_{21} & x_{31} \\ x_{21} & x_{22} & x_{32} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}) = \begin{pmatrix} x_{11} & 0 & x_{31} \\ 0 & x_{22} & x_{32} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}$$

Sample $X^{(1)}, \ldots, X^{(n)}$; each $X^{(i)} \in \mathbb{R}^p$

A natural candidate to estimate Σ is (when n > p)

$$\tilde{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (X^{(i)} - \bar{X})(X^{(i)} - \bar{X})^{T}$$

but it does not take into account the restriction $K = \Sigma^{-1} \in \mathcal{S}^+(\mathcal{G})$

MLE Theorem. Let the graph $\mathcal{G}=(V,E)$ govern the Gaussian graphical model $X=(X_v)_{v\in V}\sim N_p(\xi,\Sigma)$, with precision matrix $K=\Sigma^{-1}\in\mathcal{S}^+(\mathcal{G})$. Consider an n-sample $X^{(1)},\ldots,X^{(n)}$ of $X\in\mathbb{R}^p$ with n>p=|V|. The MLE of the mean is $\hat{\xi}=\bar{X}$.

The MLE $\widehat{K} \in \mathcal{S}^+(\mathcal{G})$ of the precision matrix is the unique solution of the equation

$$\pi_{\mathcal{G}}(\hat{K}^{-1}) = \pi_{\mathcal{G}}(\tilde{\Sigma}), \tag{1}$$

where $\tilde{\Sigma}$ is the sample covariance:

$$\tilde{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (X^{(i)} - \bar{X})(X^{(i)} - \bar{X})^{T}$$

The MLE $\hat{\Sigma}$ of Σ is given by $\hat{\Sigma} = \hat{K}^{-1}$.

Proof. Simplified case: known zero mean $\xi = 0$.

$$X = (X_1, \dots, X_p)^T$$
: random vector obeying $N(0, \Sigma)$

with unknown covariance matrix $\Sigma \in Sym^+(p)$

such that
$$K = \Sigma^{-1} \in \mathcal{S}^+(\mathcal{G})$$

The likelihood (density) function of the sample $X^{(1)}, \ldots, X^{(n)}$ equals:

$$f(x^{(1)},...,x^{(n)};K) =$$

$$= \prod_{k=1}^{n} \{ (2\pi)^{-p/2} (\det K)^{1/2} \exp(-x^{(k)^T} K x^{(k)}/2) \}$$

$$= (2\pi)^{-pn/2} (\det K)^{n/2} \exp(-\sum_{k=1}^{n} x^{(k)^T} K x^{(k)}/2)$$

Note that the real number in the exponent equals its trace. We use the formula $\operatorname{tr}(A_{l\times m}B_{m\times l})=\operatorname{tr}(B_{m\times l}A_{l\times m})$:

$$\sum_{k=1}^{n} x^{(k)^{T}} K x^{(k)} = \operatorname{tr}\left(\sum_{k=1}^{n} x^{(k)} x^{(k)^{T}}\right) K = \left\langle n \tilde{\Sigma}, K \right\rangle$$

where $\langle R, S \rangle$ is the usual scalar product of two symmetric matrices $\langle R, S \rangle = \sum_{i,j} r_{ij} s_{ij}$.

We explain it on an example 2×2 :

$$\left\langle \begin{pmatrix} a & b \\ b & c \end{pmatrix}, \begin{pmatrix} A & B \\ B & C \end{pmatrix} \right\rangle = aA + bB + bB + cC$$

$$trace\begin{pmatrix} a & b \\ b & c \end{pmatrix}\begin{pmatrix} A & B \\ B & C \end{pmatrix} = (aA + bB) + (bB + cC)$$

$$f(x^{(1)},\ldots,x^{(n)};K) = (2\pi)^{-\frac{pn}{2}}(\det K)^{\frac{n}{2}}\exp(-\frac{1}{2}\left\langle n\tilde{\Sigma},K\right\rangle)$$

Because of
$$K \in \mathcal{S}^+(\mathcal{G})$$
, $\langle n\tilde{\Sigma}, K \rangle = \langle \pi_{\mathcal{G}}(n\tilde{\Sigma}), K \rangle$.

(recall that K has obligatory zeros when $i \not\sim j$ and $\pi_{\mathcal{G}} = \text{projection on } \mathcal{S}(\mathcal{G})$)

We explain it on the example 3×3 of Simpson paradox

$$\left\langle \begin{pmatrix} x_{11} & x_{21} & x_{31} \\ x_{21} & x_{22} & x_{32} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}, \begin{pmatrix} \kappa_{11} & 0 & \kappa_{31} \\ 0 & \kappa_{22} & \kappa_{32} \\ \kappa_{31} & \kappa_{32} & \kappa_{33} \end{pmatrix} \right\rangle =$$

$$\left\langle \begin{pmatrix} x_{11} & 0 & x_{31} \\ 0 & x_{22} & x_{32} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}, \begin{pmatrix} \kappa_{11} & 0 & \kappa_{31} \\ 0 & \kappa_{22} & \kappa_{32} \\ \kappa_{31} & \kappa_{32} & \kappa_{33} \end{pmatrix} \right\rangle$$

Which $K \in \mathcal{S}^+(\mathcal{G})$ is **most likely?**

Maximum Likelihood Estimation \Rightarrow it is $K = \hat{K}$ for which $f(x^{(1)}, \dots, x^{(n)}; \hat{K})$ is maximum

 $\iff \log f(x^{(1)}, \dots, x^{(n)}; \hat{K}) \text{ is maximum}$

$$\iff grad_K \log f(x^{(1)}, \dots, x^{(n)}; \hat{K}) = 0.$$

We study as a function of $K \in \mathcal{S}^+(\mathcal{G})$

$$\log f(x^{(1)}, \dots, x^{(n)}; K) = c + \frac{n}{2} \log \det K - \frac{n}{2} \langle \pi_{\mathcal{G}}(\tilde{\Sigma}), K \rangle$$

For M invertible $p \times p$ real matrix we have grad $\log \det M = M^{-1}$

(EXERCISE: prove this derivation formula)

 $K \in \mathcal{S}^+(\mathcal{G})$, so grad_K does not contain $\frac{\partial}{\partial \kappa_{ij}}$ for $i \not\sim j$

$$0 = \operatorname{grad}_{K} \log f(x^{(1)}, \dots, x^{(n)}; K) = \frac{n}{2} (\pi_{\mathcal{G}}(K^{-1}) - \pi_{\mathcal{G}}(\tilde{\Sigma}))$$

Equation (1) is obtained: $\pi_{\mathcal{G}}(\widehat{K}^{-1}) = \pi_{\mathcal{G}}(\widetilde{\Sigma})$.

The existence and unicity of a solution \widehat{K} are ensured for $n \geq p$ (when $\mathbf{E}X$ is not given, for n > p) by a convexity argument (omitted).

Example 1.(Simpson paradox) \mathcal{G} : 1———3——2 The graph \mathcal{G} governs the model.

Suppose that n > 3 and the sample covariance matrix

equals
$$\tilde{\Sigma} = \begin{pmatrix} 1 & 0.5 & 1 \\ 0.5 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix}$$
. (check that $\tilde{\Sigma} >> 0$)

We have $(\tilde{\Sigma}^{-1})_{12} = -0.5 \times (-0.5) = 0.25$

so $\tilde{\Sigma}^{-1} \not\in \mathcal{S}(\mathcal{G})$ (terms₁₂ should be 0 for matrices in $\mathcal{S}(\mathcal{G})$.). Thus $\tilde{\Sigma} \neq \hat{\Sigma}$.

We apply the MLE Theorem.

$$\pi_{\mathcal{G}}(\tilde{\Sigma}) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix}$$
. In order to find $\hat{\Sigma}$, we need to find

$$x$$
 such that $\Sigma_x = \begin{pmatrix} 1 & x & 1 \\ x & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix} \in Sym^+$ and $\Sigma_x^{-1} \in \mathcal{S}(\mathcal{G})$.

PLEASE DO IT NOW!

 $\Sigma_x \in Sym^+ \Leftrightarrow 2 > x^2$ and $\det \Sigma_x = 4x - 3x^2 > 0 \Leftrightarrow 0 < x < \frac{4}{3}$.

The condition $\Sigma_x^{-1} \in \mathcal{S}(\mathcal{G})$ (terms₁₂ should be 0) gives $\det \begin{pmatrix} x & 1 \\ 2 & 3 \end{pmatrix} = 0$, so $x = \frac{2}{3}$. By MLE Theorem

$$\hat{\Sigma} = \Sigma_{\frac{2}{3}} = \begin{pmatrix} 1 & \frac{2}{3} & 1 \\ \frac{2}{3} & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix}$$

In practice, when n > p, we proceed as follows:

- 1. We compute the empirical covariance $\tilde{\Sigma}$ from the sample $X^{(1)}, \ldots, X^{(n)}$. We do the projection $\pi_{\mathcal{G}}(\tilde{\Sigma})$.
- 2. We must find $\hat{K} \in \mathcal{S}^+(\mathcal{G})$ such that $\pi_{\mathcal{G}}(\hat{K}^{-1}) = \pi_{\mathcal{G}}(\tilde{\Sigma})$.

This is a highly non-trivial step. The Theorem says that a **unique solution exists**, but does not say how to find it.

This question is trivial only when $\mathcal{G}=$ complete graph. (Then $\pi_{\mathcal{G}}=id$ and $\widehat{K}=\widetilde{\Sigma}^{-1}$)

3. Once 2. solved, we compute $\widehat{\Sigma} := \widehat{K}^{-1}$. (For \mathcal{G} complete we find the well known MLE $\widehat{\Sigma} = \widetilde{\Sigma}$)

- An **explicit solution** of the Likelihood Equation (1) $\pi_{\mathcal{G}}(K^{-1}) = \pi_{\mathcal{G}}(\tilde{\Sigma})$ is known on **decomposable** (also called **chordal** or **triangulated**) graphs. It is expressed by the Lauritzen map.
- On any graphical model, in order to find approximatively a solution of (1), one can perform the **Iterative Proportional Scaling (IPS)** algorithm, which is infinite on non-decomposable graphs.

**Decomposable graphs roughly means decomposable into complete subgraphs connected by complete separators.

The smallest non-decomposable graph is the square

The Likelihood Equation $\pi_{\mathcal{G}}(K^{-1}) = \pi_{\mathcal{G}}(\tilde{\Sigma})$ is in 2 variables and it leads to a fifth degree equation in x which would be solvable for particular values of $\pi_{\mathcal{G}}(\tilde{\Sigma})$ only.

**TOWARDS BAYESIAN METHODS

In Bayesian statistics, we need to propose a **prior law** on the precision matrix K. The law of MLE may be naturally proposed as a prior law.

- the random matrix $\pi(\tilde{\Sigma}) \in \pi_{\mathcal{G}}(Sym^+(p))$ obeys Wishart law on the cone $\pi_{\mathcal{G}}(Sym^+(p))$.
- the random matrix $K \in \mathcal{S}^+(\mathcal{G})$ such that the Likelihood Equation $\pi_{\mathcal{G}}(K^{-1}) = \pi_{\mathcal{G}}(\tilde{\Sigma})$ holds obeys Wishart law on the cone $\mathcal{S}^+(\mathcal{G})$.

Harmonic (Laplace) analysis on the convex cones is needed to study these Wishart laws (e.g. the density)

The formula for sample density

$$f(x^{(1)},\ldots,x^{(n)};K) = (2\pi)^{-\frac{pn}{2}} (\det K)^{\frac{n}{2}} \exp(-\frac{1}{2} \left\langle n\tilde{\Sigma},K\right\rangle)$$

suggests using as a prior distribution of K the law with density

$$K \to C(\det K)^{\frac{s}{2}} e^{-\frac{1}{2} \operatorname{tr}(K\theta)}, \quad K \in \mathcal{S}^+(\mathcal{G})$$

where $\theta \in \pi_{\mathcal{G}}(Sym^+(p))$, i.e. only the terms $(\theta_{ij})_{i \sim j}$ are essential. This is a Diaconis-Ylvisaker prior for K.

The computation of the normalizing constant C is crucial for Bayes methods (and uneasy!)