MODELE GRAFICZNE

Piotr GRACZYK

5. MAXIMUM LIKELIHOOD ESTIMATION



Let X be a Gaussian random vector N(£,3) on RP
(we consider p variables Xq,...,Xp)

with unknown mean & and covariance >

We dispose of a sample X(1) x(2)  x() of x

We want to estimate:
the unknown mean &
the unknown covariance 2_.



CLASSICAL CASE that you know after a course in
Mmultivariate statistics: no information on conditional
independence between X;'s.

(saturated graphical model, complete graph G)

The maximum likelihood estimators are well known:

for the mean &, the empirical mean € = X

for the covariance >, the empirical covariance

o1 S (x@ - x)y(xW - )T
=1

T hese maximum likelihood estimators exist if and only if
the matrix X is strictly positive definite. This happens
with probability 1 if n > p and never if n < p.



5= has a Wishart law on the matrix cone Sym™(p,R).

This is a matrix analog of KHI? law x2_; sur RT for
p=1.

(CisaconeifreC = Vt>0 teeC)



GAUSSIAN GRAPHICAL MODEL CASE
Estimation under conditional independence between X;’s.
(graphical model with non-complete graph G)

Let V ={1,...,p} and let G = (V, E) be an undirected
graph.

Let |S(G) ={Z € Sym(pxp)|itj = Z;; =0}
S(G) is the space of symmetric pxp matrices with oblig-
atory zero terms Z;; =0 for ¢ % j

Let ST(G) = Sym™T(p,R) N S(G) be the open cone of
positive definite matrices with obligatory zero terms
Z;i; =0 for i j.



Example 1. (Simpson paradox) X 1l X5 | X3
X171 and X, are conditionally independent knowing X3

Graphe G : 1 3 2

The precision matrix K = >~ has obligatory zeros
K12 = ko1 =0

r11 0 =31
K e 0 xoo 32 ||®11,%22, 231,232,233 € R ;NSym™(3)
r31 32 33

K € 81t(G)| is a supplementary restriction to the MLE
problem




Example 2. Nearest neighbours interaction graph Ay

Graphe G : 1 2 3 4

( (11 201 O 0 )
T T T O
K € ! 21 22 32

O x32 233 43
L\ 0 0 w43 w44

| 211, ...,244 € R yNSym™T(4)

K e S"‘(g) is a supplementary restriction to the MLE

problem



GAUSSIAN GRAPHICAL MODEL ¢
Conditional independence case
n-sample of X = estimation of parameters &,2 of X

In order to formulate the MLE formula, we need the
natural projection |rg : Sym — S(G)

This projection puts O instead of x;; when i ¢ j in G.

Example 1.(Simpson paradox) G : 1 3 2
r11 T21 T31 11 0 x31
mg(| 221 o2 z32|)=| O 220 32

£31 L32 I33 £31 I32 X33



Sample X(1) .. . x():  each X ¢ Rp

A natural candidate to estimate > is (when n > p)

o1 S (x@ - x)y(xW - )T
ni=1

but it does not take into account the restriction
K=3x"1e87©G)



MLE Theorem. Let the graph G = (V,E) govern
the Gaussian graphical model X = (Xy),cv ~ Np(€,X),
with precision matrix K = ~~1 € ST(G). Consider an
n-sample X1 . x() of X e R? with n >p=|V].

The MLE of the mean is ¢ = X.

The MLE K € ST(G) of the precision matrix is the
unique solution of the equation

rg(K™1) = ng (%), (1)
where > is the sample covariance:
~ 1 : _ : _
S=-3(x®O_x)(xW_x)T
i=1

The MLE 3 of X is given by > = K1,
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Proof. Simplified case: known zero mean & = 0.

X = (Xq,...,Xp)! : random vector obeying N(0,X)

with lunknown covariance matrix > ¢ Sym+(p)

such that | K = X1 € $T(G)
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The likelihood (density) function of the sample
xM) . x(®) equals:

f(zV 2 Ky =
= TP, {(27)P/2(det K)1/2 exp(—a® " K2(k) /2)}
= (2r)P"/2(det K)/2 exp(— Y0_, ' Kz (®) /2)

Note that the real number in the exponent equals its
trace. We use the formula tr(A;«,,Bmx1) = tr(B,,xiA1xm) :

> aj(k)TKw(k) =tr()_ aj(k)x(k)T)K = <ni, K>

where < R,S > is the usual scalar product of two sym-
metric matrices < R, S >=3_; ;7;;Si;-
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We explain it on an example 2 x 2:

GG

trace (

a b
b ¢

)

2)

A B
B C

—aA+bB + bB + cC

> = (aA+bB) + (bB + cC)
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faW, 2 K) = (2m) 72 (det K)2 exp(—4 (nE, K))
Because of K € ST(G), <ni,K> = <7rg(ni),K>.

(recall that K has obligatory zeros when i+ j
and mg = projection on S(G))
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We explain it on the example 3 x 3 of Simpson paradox

x21 Too x32|,| O Koo K32

< r11 *21 31 k11 0 k31 >
r31 T32 X33 K31 K32 K33

O oo x32|,| O Koo K32

<3311 0 x31 k11 O KJ31>
r31 32 33 K31 K32 K33
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Which K € ST(G) is most likely?
Maximum Likelihood Estimation =
it is K = K for which f(z(1), ... 2(m: K) is maximum

< log f(z(1), ... z(M: K) is maximum

< gradg l0g f(zV) . 2 R) = 0.
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We study as a function of K € ST(G)
log f(zV). ... 2. K) = ¢+ g log det K — g (ng(£), K)

For M invertible p X p real matrix we have
gradlogdet M = M1
(EXERCISE: prove this derivation formula)

K € ST(G), so gradg does not contain 82@, for ¢ o j

0 = gradg log f(z1), ... 2("): k) = g(Wg(K_l) — (X))

Equation (1) is obtained: |7g(K~1) = ng(2)|.

The existence and unicity of a solution K are ensured
for n > p (when EX is not given, for n > p)
by a convexity argument (omitted). ]
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Example 1.(Simpson paradox) G : 1 3 2
The graph G governs the model.

Suppose that n > 3 and the sample covariance matrix

1 05 1
equals = =]0.5 2 2/|. (check that & >>0)
1 2 3

We have (£ 1)1 = -0.5x (-0.5) = 0.25
so 71 ¢ S(G) (termsyo should be 0 for matrices in
S(G).). Thus ~ # 2.
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We apply the MLE Theorem.

1 0 1
mg(X) =10 2 2. In order to find X, we need to find
1 2 3
1 » 1
z such that ., = [2 2 2| € Sym™ and =1 € S(G).
1 2 3

PLEASE DO IT NOW!
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S,e8ymT e 2>z2and detX, =42 —-322>0<0<
4

The condition X1 € S(G) (termsio should be 0) gives

x 1) _2
det (2 3> =0, so x = 3 By MLE Theorem

1

2
3

~~

> =2

WIN
= WIN =
N N WIN
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In practice, when n > p, we proceed as follows:

1. We compute the empirical covariance > from the
sample X(1) . x(®n)
We do the projection mg(%).

2. We must find K € ST(G) such that |ng(K~1) = ng(2).

This is a highly non-trivial step. The Theorem says
that a unique solution exists, but does not say how
to find it.

This question is trivial only when g=complete graph.
(Then ng =id and K =3¥~1)

3. Once 2. solved, we compute > = K1
(For G complete we find the well known MLE > =)

21



e An explicit solution of the Likelihood Equation (1)
mg(K—1) = 7mg(X) is known on decomposable (also
called chordal or triangulated) graphs.

It is expressed by the Lauritzen map.

e On any graphical model, in order to find approxima-
tively a solution of (1), one can perform the

Iterative Proportional Scaling (IPS) algorithm,
which is infinite on non-decomposable graphs.
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**Decomposable graphs roughly means decompos-
able into complete subgraphs connected by complete
separators.

The smallest non-decomposable graph is the square
o]l —eo?2.

o4 —e3
The Likelihood Equation mg(K 1) = 1g(X) is in 2 vari-

ables and it leads to a fifth degree equation in x which
would be solvable for particular values of mg(%) only.
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**TOWARDS BAYESIAN METHODS

In Bayesian statistics, we need to propose a prior law
on the precision matrix K. The law of MLE may be
naturally proposed as a prior law.

e the random matrix 7 (3) € ng(Sym™ (p)) obeys Wishart
law on the cone mg(Sym™(p)).

e the random matrix K € ST(G) such that the Likeli-
hood Equation wQ(K_l) = mg(%) holds obeys Wishart
law on the cone ST(G).

Harmonic (Laplace) analysis on the convex cones is
needed to study these Wishart laws (e.g. the density)
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The formula for sample density
pn n ~
f@, 2 K) = (27) 72 (det K)2 exp(—5 <nz, K>)

suggests using as a prior distribution of K the law with
density
S 1
K — C(detK)3e 3" KO i c st(g)
where 6 € ng(Sym™(p)), i.e. only the terms (6;,);~; are

essential. This is a Diaconis-Ylvisaker prior for K.

The computation of the normalizing constant C is cru-
cial for Bayes methods (and uneasy!)
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