
Uniwersytet Wrocªawski
Wydziaª Matematyki i Informatyki

Instytut Matematyczny
specjalno±¢: Analiza danych

Bartosz Chmiela

Locally-informed proposals in Metropolis-Hastings
algorithm with applications

Algorytm Metropolis-Hastings z 'lokalnie-poinformowanymi' rozkªadami generuj¡cymi
kandydatów z zastosowaniami

Praca magisterska
napisana pod kierunkiem
dr. hab. Pawªa Lorka

Wrocªaw 2022

Abstract

The Markov Chain Monte Carlo methods (abbrv. MCMC) are a family of

algorithms used for approximating sampling from a given probability distribution.

They prove very e�ective when the state space is large. This fact can be used to solve

many hard deterministic problems � one of them being traveling salesmen problem.

It will be used in this thesis to test a new approach of locally-informed proposals as

a modi�cation of well known Metropolis-Hastings algorithm. In this thesis we will

present the implementation of modi�ed algorithm, experiments based on it, results

and a comparison of previous MCMC methods.

Metody próbkowania Monte Carlo ªa«cuchami Markowa s¡ rodzin¡ algorytmów

u»ywanych do przybli»ania próbkowania z danego rozkªadu prawdopodobie«stwa.

Okazuj¡ si¦ efektywne zwªaszcza gdy przestrze« stanów jest wielka. Ten fakt mo»e

by¢ wykorzystany przy rozwi¡zywaniu wielu deterministycznych problemów � jednym

z nich jest problem komiwoja»era. Zostanie on u»yty w tej pracy do przetestowania

nowego podej±cia wykorzystuj¡cego lokalnie-poinformowane rozkªady generuj¡ce kan-

dydatów, jako mody�kacji dobrze znanego algorytmu Metropolisa-Hastinigsa. W tej

pracy zaprezentujemy implementacje zmody�kowanego algorytmu, eksperymentów

bazuj¡cych na nim, wyników oraz porównania z poprzednimi metodami próbkowania

Monte Carlo.

2

Contents

1 Introduction 5

2 Markov chains 6

2.1 Basic terminology and assumptions . 6
2.2 De�nition and basic properties . 7

2.2.1 Irreducibility . 8
2.2.2 Periodicity . 8

2.3 Stationarity and ergodicity . 8
2.4 Reversibility . 9

3 Markov chain Monte Carlo methods 10

3.1 Metropolis-Hastings algorithm . 10

4 Traveling salesman problem 12

4.1 Statement of the problem . 12
4.2 Complexity . 13
4.3 Dataset . 13

5 Approximate solutions 14

5.1 Basic idea . 14
5.2 Metropolis-Hastings algorithm . 14
5.3 Candidates . 15
5.4 Random neighbours (RN) . 15

5.4.1 Computational considerations . 15
5.4.2 Implementation . 16
5.4.3 Complexity . 16

5.5 Locally-informed proposals (LIP) . 17
5.5.1 Theoretical background . 17
5.5.2 Computational considerations . 17
5.5.3 Example . 18
5.5.4 Implementation . 20
5.5.5 Complexity . 20

5.6 Simulated annealing . 21

6 Results 22

6.1 Initial condition . 22
6.2 Simulated annealing . 23
6.3 Temperature . 23
6.4 Algorithms comparison . 24

7 Conclusions 28

7.1 Areas to improve . 28

8 Codebase 30

8.1 mcmc . 30
8.2 tsp . 30

References 31

3

List of Tables

5.5.1 Neighbour representation. 19
6.4.1 Methods comparison, tk = 1, 20000-th step. 26
6.4.2 Methods comparison, tk =

3
log(k+2)

, 20000-th step. 26
6.4.3 Amount of time and number of steps required for LIP algorithm to reach

the result of RN after 20000 steps, tk = 1. 27

List of Figures

6.1.1 Di�erent initial states for berlin52. 22
6.1.2 Di�erent initial states for kroA150. 22
6.2.1 Di�erent cooling parameters for berlin52 and kroA150. 23
6.2.2 Di�erent cooling parameters for att532 and dsj1000. 23
6.3.1 Di�erent temperature parameters for berlin52 and kroA150. 24
6.3.2 Di�erent temperature parameters for att532 and dsj1000. 24
6.4.1 Comparing RN and LIP for berlin52 with di�erent cooling parameters. . . 25
6.4.2 Comparing RN and LIP for kroA150 with di�erent cooling parameters. . . 25
6.4.3 Comparing RN and LIP for berlin52 and kroA150 with low number of

iterations. 25
6.4.4 Comparing RN and LIP for att532 with di�erent cooling parameters. . . . 26
6.4.5 Comparing RN and LIP for dsj1000 with di�erent cooling parameters. . . 26

4

1 Introduction

The Markov Chain Monte Carlo methods (abbrv. MCMC) are a family of algorithms used
for approximate sampling from a given probability distribution. At �rst they do not seem
useful for solving practical deterministic problems, but with some tweaks they can become
a powerful tool. It happens especially when space of possible solutions is enormous and
computing becomes infeasible for machines. These o�er a shortcut for obtaining �close
enough� answers.

At their core, MCMC methods generate a Markov chain (abbrv. MC) with a de�ned
distribution and sample using it. The convergence of the chain is assured by ergodic
theorems. One of the most known of MCMC methods is isMetropolis-Hastings algorithm,
which constructs a MC using another set of distributions, maybe simpler ones.

In this thesis we work with locally-informed proposals, they involve determining local
distribution � which comes down to �nding transition probabilities. They are a bit more
complex and computationally heavy, but o�er better results with less iterations.

To test this method we will need a deterministic problem which quickly becomes
infeasible for machines to compute � one of them is a well-known traveling salesman
problem. The testing is carried out using benchmark training set tsplib95 and implemen-
tation is provided in Python3.

5

2 Markov chains

Markov chains are the very basic building blocks of the theory used within this thesis.
They are a natural extension of a sequence of independent random variables, that assume
a weak dependence between the presence and the past.

In this thesis we will focus only on stochastic processes with discrete time steps and
�nite state space, which satisfy the Markov property. These properties allow us to simulate
processes in computers.

2.1 Basic terminology and assumptions

We assume that the reader has a basic probabilistic background, so that we can freely
use terminology from probability theory, like random or independent variables, stochastic
processes, measure or σ-algebra.

A Markov chain needs to be de�ned with discrete state space and index set.

De�nition 2.1. A state space of a Markov chain is a countable set S.

A state space de�nes values over which a Markov chain is iterating. In our case it is
�nite so we can associate it with natural numbers like {1, 2, . . . , N} (where N is number
of states) instead of states.

De�nition 2.2. An index set of a Markov chain is a countable set T .

An index set represents time in which Markov chain moves. For a chain we assume
discrete time steps and again in our case it will be a �nite set, so we can associate it with
a subset of natural numbers like {1, 2, . . . , t} for some t depending on a length of time
interval.

To work with any probabilistic construct such as Markov chain, we need a probability
space in which it resides and can be measured.

De�nition 2.3. A probability space is a triplet (Ω,F , P), where Ω is some abstract sample
space, F is a σ-algebra (event space) and P is a probability measure.

In our case the sample space is a common space for random variables Xk, k = 0, 1, . . .
and is a space of all possible states. The event space is a space of all possible events given
our states. Probability measure is not explicitly given, because it is often not easy to �nd
a probability of a random variable.

Most of the time a Markov chain will be associated with a stochastic transition matrix
P, that represents probabilities of transitions between states.

De�nition 2.4. A stochastic matrix P is a matrix with non-negative entries, which rows
sum to 1.

The number of entries of a transition matrix grows quadratically with number of states,
so it quickly becomes a large object, not possible to �t into the memory of a computer.
Now with the notation and the background we are able to de�ne a Markov chain.

6

2.2 De�nition and basic properties

In this subsection we will formally de�ne a Markov chain (abbrv. MC) and list some of
its basic properties.

De�nition 2.5. A Markov chain is a sequence of random variables {Xk}k∈T de�ned on
a common probability space (Ω,F , P), that take values in S, such that it satis�es Markov
property:

P (Xk+m = j|Xk = i,Xlp−1 = ilp−1 , Xlp−2 = ilp−2 , . . . , Xl1 = i1) = P (Xk+m = j|Xk = i),

for all indices l1 < . . . < lp−1 < k < k +m, 1 ≤ p ≤ k, all states j, i, ip−1, ip−2, . . . , i0 ∈ S
and m ≥ 1.

This de�nition points out the independence of the past of a MC. The probabilities
depend on current state and the number of steps.

De�nition 2.6. A Markov chain is homogeneous if additionally:

P (Xk+m = j|Xm = i) = P (Xk = j|X0 = i).

In this case we de�ne:

pi,j(k)
df
= P (Xk = j|X0 = i).

Homogeneous Markov chains are more natural for us and easier to study. These
eliminate the dependence on the number of steps that a Markov chain went through.
From now on, whenever we use a term Markov chain we will mean a homogeneous Markov
chain.

The probabilities pi,j(k) give us a probability of transition between states i and j in k
steps. We can use them to form a special matrix that will be linked with a MC.

De�nition 2.7. A transition matrix in k steps P(k) for a Markov chain is a stochastic
matrix constructed using transition probabilities:

Pi,j(k) = pi,j(k), Pi,j(0) = I, P
df
= Pi,j(1).

De�nition 2.8. An initial distribution of a Markov chain is a vector µ = (µ1, . . . , µN) ∈
RN such that

∑N
i=1 µi = 1. This is a distribution of a random variable X0, which is an

initial state of a Markov chain.

A transition matrix together with initial distribution de�ne a MC, so these are the
only objects that need to be analyzed if one wants to study those chains.

Theorem 2.1. Let µ(k) ∈ RN be a distribution of a Markov chain at k-th step and µ ∈ RN

the initial distribution, then for all k:

µ(k) = µPk.

Proof of this theorem involves unfolding vectorized equation and using basic induction
so it will be left. It also shows that given some knowledge of matrix P one can easily
work with a MC.

7

2.2.1 Irreducibility

Irreducibility guarantees that all states of a MC are somehow connected and some of
their properties transfer between them. We do not need to analyze every state separately.
Moreover an irreducible MC cannot be split into more chains.

De�nition 2.9 (Irreducibility). A Markov chain with transition matrix P is called irreducible
if and only if for every pair of states i and j there exists a positive probability of transition
between them i.e.,

∀ i, j ∈ S ∃ kPi,j(k) > 0.

2.2.2 Periodicity

Periodicity tells us something about the structure of the transition matrix. It especially
indicates when there is a possibility of a MC coming back to a state.

De�nition 2.10 (Periodicity). Let di be a greatest common divisor of those k such that
Pi,i(k) > 0 i.e.,

di = gcd{k ≥: Pi,i(k) > 0}
If di > 1 then state i is periodic. If di = 1 then state i is aperiodic.

De�nition 2.11. A Markov chain with transition matrix P is called periodic with a
period d when all states are periodic with a period d. In particular, when Markov chain is
irreducible and there is a state with a period d, then all the states are with period d and
chain is periodic.

2.3 Stationarity and ergodicity

In this subsection we will cover asymptotics for the long-term behavior of a MC.

De�nition 2.12 (Stationarity). A probability distribution π = (π1, . . . , πN) is called
stationary if it satis�es

πj =
∑
i∈S

πipij,

or equivalently in vector form:
π = πP.

This equation is often described as the balance equation.

From this de�nition it is easy to see that if a MC starts with stationary distribution
it will not leave it.

De�nition 2.13 (Ergodicity). A Markov chain is ergodic when it is irreducible and
aperiodic.

Theorem 2.2. For any ergodic Markov chain, there exist at least one stationary distribution.

Theorem 2.3. Let {Xk} be a ergodic Markov chain, then:

lim
k→∞

pij(k) = πj.

The proofs of the Theorems 2.2 and 2.3 can be found in [3]. Those theorems tell us
for some MC we are able to predict their behaviors after enough time passes. It also gives
us a tool to approximate sampling from a given distribution π using MC.

8

2.4 Reversibility

A reversible MC has a property of having the same distribution in the past and in the
future.

De�nition 2.14 (Reversibility). A Markov chain {Xk} is reversible if random vectors

(Xi1 , Xi2 , . . . , Xil) and (Xm−i1 , Xm−i2 , . . . , Xm−il),

have the same distribution for all m and ij, such that ij,m− ij ∈ T .

This condition is just a mathematical representation of the previous statement and it
is not practical, so we need another way of describing it.

De�nition 2.15 (Detailed balance). A probability distribution π = (π1, . . . , πN) satis�es
detailed balance for a Markov chain with transition matrix P if

∀ i, j ∈ S πipi,j = πjpj,i,

such distribution is called reversible.

De�nition 2.16. A Markov chain is said to be reversible if there exists a reversible
distribution for it.

This de�nition is much more practical, because the condition can be calculated for
each proposed distribution.

Theorem 2.4. If a probability distribution π satis�es detailed balance for a Markov chain
with transition matrix P, then π is a stationary distribution for this chain.

Proof. Summing over all i ∈ S we get∑
i∈S

πipi,j = πj

∑
i∈S

pj,i = πj,

which is a balance equation.

The detailed balance will be often used in as it is somewhat easier to check than
balance equation.

9

3 Markov chain Monte Carlo methods

In this section we will show how to use aforementioned properties of a MC for solving
problems. The idea is to use a MC to simulate complicated models and estimate relevant
parameters. Those methods are called Markov chain Monte Carlo (abbrv. MCMC).

The classical example is measuring the area under a curve or a �gure, with counting
how many randomly generated points are inside or outside the �gure and estimating
area as a ratio of points inside to the number of all points. Such a sequence of points
is a sequence of random independent variables, which is also a MC, but without any
dependence.

If we could generate a MC with a stationary distribution proportional to some function
of our interest we could �nd its maximum, by counting frequencies of the states. That is
the core idea behind �nding optimum using Metropolis-Hastings algorithm.

3.1 Metropolis-Hastings algorithm

We seek an algorithm of constructing a MC, which has a stationary distribution of our
given probability distribution π (πi > 0). One could of course �nd such a transition matrix
P that has stationary distribution π but this does not avoid the problem of enormous
state space � the matrix P would also be enormous. So it would be a feasible idea, when
the state space is small and also deterministic algorithms are able to �nd solutions.

Regardless of this fact let us start with constructing such a matrix. Assume that
we have another stochastic matrix Q which is irreducible, aperiodic and Qi,j > 0 ⇐⇒
Qj,i > 0. Let us consider a matrix de�ned as:

Pi,j =

{
Qi,j min

(
1,

πjQj,i

πiQi,j

)
if i ̸= j,

1−
∑

j∈S\{i}Pi,j if i = j.
(3.1.1)

Theorem 3.1. A matrix de�ned in 3.1.1 is stochastic, irreducible, aperiodic and has a
stationary distribution π.

Proof. The matrix P is stochastic from a de�nition � one entry in a row is just a sum of
every other and subtracted from 1. For Qi,j > 0 we have Pi,j > 0 and irreducibility and
aperiodicity are inherited from Q. Let us look at the detailed balance:

πjPj,i = πjQj,imin

(
1,

πiQi,j

πjQj,i

)
= min (πiQi,j, πjQj,i) = πiQi,j min

(
1,

πjQj,i

πiQi,j

)
= πiPi,j.

We see that this matrix satis�es detailed balance, so the distribution π is stationary.

The matrix Q is called candidate matrix or a proposal distribution as it will be later
proposing candidates for a MC. It is a kind of parameter for our later algorithms � a
well chosen matrix will give better or worse results. We proved more general case, but if
matrix Q is symmetric some terms cancel and the proof becomes easier.

TheMetropolis-Hastings algorithm (abbrv. M-H) utilizes this construction to generate
irreducible, aperiodic MC with a stationary distribution π. When candidate matrix Q is
symmetric we call this a Metropolis algorithm.

10

Algorithm 1 Metropolis-Hastings algorithm

1: Choose a state i ∈ S.
2: X0 ← i
3: for k = 0, 1, . . . do
4: Sample j ∼ Qi = (Qi,1,Qi,2, . . . ,Qi,N).
5: Sample U ∼ Unif(0, 1).

6: if U ≤ min
(
1,

πjQj,i

πiQi,j

)
then

7: Xk+1 ← j
8: else

9: Xk+1 ← Xk

10: end if

11: end for

In reality one does not need to create whole candidate matrix or a transition matrix.
We just need to know how to sample at one step, so how to choose a candidate given
a current state. If the procedure is symmetric it simpli�es drastically, we need only to
know the quotient of distribution π at this step. The next constructions use this as an
advantage to reduce number of computations.

11

4 Traveling salesman problem

Traveling salesman problem (abbrv. TSP) is a well known for being hard to solve and
this is why many researchers, including us, use it as a benchmark problem for testing new
methods. It is an old problem, with no solution, only with methods that try to achieve
the best answer. It is proved to be a NP-hard problem, so deterministic algorithms cannot
be reasonably used. This is why probabilistic methods like MCMC become interesting,
because they eliminate the need of computing all the steps or states of the problem.

TSP asks to �nd a shortest (the least costly) path between the vertices of a given
graph, that covers all of them (once) and is a cycle. This question becomes harder to
answer with more vertices added to a graph. It started as a problem of salesman visiting
all of the cities and coming back to his place.

4.1 Statement of the problem

To state this problem we need to de�ne weighted graphs and cycles, because they can
represent the problem.

De�nition 4.1. A undirected graph G is a pair (V,E), where V is a set of vertices and
E is a set of edges, which is a subset of all unordered pairs of vertices.

De�nition 4.2. A weighted graph G = (V,E) is a graph such that each edge e has assigned
a weight we ∈ R ∪ {∞}. A undirected weighted graph has symmetrical weights, so

∀i,j∈V wi,j = wj,i.

Vertices could be any set, so we can think of them as a set of all cities. An edge is a
pair of vertices, so it can be a connection between cities. A weight is just a function on
edges, so it could be a distance between cities.

Again, because we have �nite number of cities, we can work on set of indices instead.
We will associate weight wi,j with the weight of an edge between cities i and j which is
the same as wj,i.

De�nition 4.3. A path is a sequence of edges, in which all edges (and vertices joining
them) are distinct.

De�nition 4.4. A cycle is a path c = (e1, e2, . . . , ek) such that only �rst and last edge
are equal (e1 = ek).

De�nition 4.5. A Hamiltonian cycle is a cycle that visits each vertex exactly once.

Now we can express salesman tour as a Hamiltonian cycle that visits a city once. Such
a cycle can be thought as a permutation of vertices.

De�nition 4.6. A tour is a Hamilitonian cycle and we identify it with a permutation of
vertices.

De�nition 4.7 (Traveling salesman problem). Given an undirected weighted graph G =
(V,E), |V | = n �nd a permutation σmin of vertices such that

σmin = argmin
σ∈Sn

(
n−1∑
i=1

wσ(i),σ(i+1) + wσ(n),σ(1)

)
,

where Sn is a set of all permutations of vertices and wi,j is distance (weight) between state
i and j.

12

This de�nition exactly states the TSP: visit all cities once, with the least distance
covered. Of course, not every permutation could be a tour, it depends on a graph and its
edges � some vertices might be not connected. In this case we can add missing edge and
give it a weight of ∞, so that we will never choose such a tour.

4.2 Complexity

At �rst glance, one might not think of this as a hard problem, but to understand
complexity of that, it is enough to think of all the permutation of vertices Sn. It has
n! elements, a number which grows rapidly. It means that if we want to check all possible
salesman tours, we need to compute distances at most n! times, which becomes infeasible
with only 20 cities.

Depending on a method of calculating the distance we obtain complexity O(n! · d(n))
where d(n) is a number of steps needed to calculate distance of one path. If one just adds
all weights then the complexity will be of O(n! ·n), which is a lot more than a polynomial
complexity and quickly becomes impossible to compute.

There are other methods like dynamic programming � Held-Karp algorithm, but the
complexity O(n2 · 2n) is still a lot. The problem has been proven to be NP -hard even
with removing some of the constraints or using easier metrics.

4.3 Dataset

To test our methods, we have obtained data from TSPLIB([2]) a site, which is a library of
sample instances for TSP (not only that) from various sources and types. All the �les there
are of the extension .tsp (or alternatively .xml) and of following structure: nameN.tsp.
name de�nes where does the data come from and N de�nes how many vertices there are.
For handling this extension we use tsplib95 package in Python3

All of the datasets there have an optimal solution, so we are able to compare our
solutions. We have chosen only some of them:

• berlin52 52 locations in Berlin, with an optimal solution: 7542,

• kroA150 150-city problem A, with an optimal solution: 26524,

• att532 532 AT&T switch locations in the USA, with an optimal solution: 27686,

• dsj1000 clustered random problem, with an optimal solution: 18659688.

13

5 Approximate solutions

In the previous section we have seen that a deterministic approach of computing salesman
tours is infeasible, so we can turn our attention to probabilistic methods of MCMC.

5.1 Basic idea

Instead of checking all possible tours, now we want sample from this space, so the
question is, how do we de�ne a distribution there? It is usually done with a softmax,
a transformation of our target function, which is in this case a distance of a tour.

De�nition 5.1. For a given vector x = (x1, x2, . . . , xd)
T ∈ Rd a softmax function s :

Rd → [0, 1]d is de�ned as

s(x)i =
exi∑d
j=1 e

xj

,

s(x) = (s(x)1, s(x)2, . . . , s(x)d) .

Such de�ned function is a probability distribution and it does not change the order of
a given vector. This is important for us, because we can apply a softmax to the distances
(weights) of the tours, so that we change them into distribution, but we will not change
the relation between tours � ones with longer distances will have greater probability. As
we are interested in shortest distances, we can add a minus sign to give them the greatest
probability.

It is still not clear, how does it help with the traveling salesman problem � even with
fast sampling algorithm. Why are we interested in probabilities instead of weights? It
is, because when looking for a maximum of softmax of a vector, we �nd a maximum of
original vector, so in case of our problem:

σmin = argmin
σ∈Sn

(wσ) = argmax
σ∈Sn

e−wσ∑
σ′∈Sn

e−wσ′
,

where wσ is distance (weight) of a tour (permutation) σ. When σmin is maximizing
probability it means when we sample from this distribution it will appear most often.
This is the core of MCMC methods � approximate solution with most probable state.

5.2 Metropolis-Hastings algorithm

Let us use the notation of weights as a vector w = (w1, w2, . . . , wN)
T representing

distances of all possible tours. As we noticed earlier, this space is enormous, so calculating
softmax of this vector s(w) is again not feasible, because of enormous sum in the denominator∑N

j=1 e
wj . This is where Metropolis-Hastings algorithm comes in handy � we do not need

actually probabilities, we just need their quotients, and this is where the sums will erase
each other. What we actually need is something proportional to the probability:

πi ∝ e−wi .

Using softmax is even more bene�cial, because of the properties of exponential function.
In each step of M-H algorithm we need to compute:

πjQj,i

πiQi,j

= e−(wj−wi) · Qj,i

Qi,j

.

14

If candidate matrix Q is symmetric this equation simpli�es further. In practice we will be
using logarithms of quotients in M-H algorithm, because multiplying numbers from (0, 1)
get small quickly, so that they get out of the range of computer abilities. After applying
logarithm we have:

log

(
πjQj,i

πiQi,j

)
= −(wj − wi) + log(Qj,i)− log(Qi,j).

Again, if candidate matrix Q is symmetric we are left only with evaluating wj −wi which
is simple and it does not involve computing any other weights.

Now that we have a target distribution we can try sampling using a MC produced by
M-H algorithm and after some point we should reach the tour with highest probability,
i.e., smallest distance covered. To do that we need to de�ne candidate matrix Q. The
better the candidates, the faster MC can get to the minimum.

5.3 Candidates

Let us start with considering what the candidate is. We know that the space of all possible
tours is enormous, so we cannot take every tour into consideration. Instead we focus on
what we will call from now on neighbours.

De�nition 5.2. A neighbour σ′ of a permutation σ is a permutation, that for some k, l
it satis�es σ′(k) = σ(l), σ′(l) = σ(k) and σ′(i) = σ(i) for the rest of indices.

These neighbours are the original tour with two swaped indices. This let us consider
a smaller space � there are

(
n
2

)
= n(n−1)

2
≈ n2 neighbours if the number of vertices is n.

5.4 Random neighbours (RN)

One approach is to sample neighbours uniformly, it has a bene�t of being simple to
understand and implement. Random neighbours (abbrv. RN) method has already been
successfully presented in [4]. Sampling them uniformly is equivalent to choosing random
indices to swap, so it can be done e�ciently. This way we do not need to create a candidate
matrix, we just use a simple procedure. Most of the entries in this matrix would be 0,
because we choose only some subset of all possible permutations to be our neighbours.
It is a symmetrical procedure (every neighbour has the same probability), so the step in
M-H algorithm simpli�es further. The candidate matrix related to such a procedure is
symmetrical, irreducible and aperiodic.

5.4.1 Computational considerations

For this algorithm to be truly e�cient, we need to �nd some other way to calculate
distance (weight) of a tour, as it can also contain many edges. Without any optimizations
for each tour σ we need to calculate its distance (weight):

wσ =
n−1∑
i=1

wσ(i),σ(i+1) + wσ(n),σ(1).

What was observed in [4] is that the weight does not change drastically when replacing
a tour to its neighbour. It is because most of the edges stay the same. When given a tour

15

σ and its neighbour σ′ they di�er only on those edges where swap is happening, let us say
k, l. So for this situation we have tours:

σ = (σ(1), . . . , σ(k − 1), σ(k), σ(k + 1), . . . , σ(l − 1), σ(l), σ(l + 1), . . .)

σ′ = (σ(1), . . . , σ(k − 1), σ(l), σ(k + 1), . . . , σ(l − 1), σ(k), σ(l + 1), . . .)

Assuming that we know the sum of weights for tour σ, we can obtain a new weight for
the neighbour σ′. To do that we need to remove from it weights wσ(k−1),σ(k), wσ(k),σ(k+1),
wσ(l−1),σ(l), wσ(l),σ(l+1) and add wσ(k−1),σ(l), wσ(l),σ(k+1), wσ(l−1),σ(k), wσ(k),σ(l+1). This is only
8 operations per neighbour, a constant complexity cost (if we can get instantly weights).

5.4.2 Implementation

To sum up all the information we summarize it in Algorithm (2). As mentioned before, we
will be working on logarithms, because they are better suited for computer computations.

Algorithm 2 Random neighbours algorithm

1: Choose a tour σ ∈ Sn.
2: X0 ← σ
3: Compute weight wσ.
4: for i = 0, 1, . . . do
5: Sample k, l ∼ Unif {1, 2, . . . , n} without replacement.
6: Sample U ∼ Unif(0, 1).
7: wσ′ ← wσ − (wσ(k−1)+σ(k) + wσ(k)+σ(k+1), wσ(l−1)+σ(l) + wσ(l),σ(l+1))
8: wσ′ ← w′

σ + (wσ(k−1)+σ(l) + wσ(l)+σ(k+1) + wσ(l−1)+σ(k) + wσ(k)+σ(l+1))
9: if log(U) ≤ min (0,−(wσ′ − wσ)) then

10: Xi+1 ← Xi

11: Xi+1(k), Xi+1(l)← Xi+1(l), Xi+1(k)
12: wσ ← wσ′

13: else

14: Xi+1 ← Xi

15: end if

16: end for

5.4.3 Complexity

As mentioned before this algorithm is simple because of uniform distribution. It requires
2 samplings, which in practice both are the same (random sampling) and 8 operations
of adding and subtracting which in theory could be instant, but in reality are of linear
complexity, because of searching of weights through the list.

Space complexity is constant � we need only two variables to contain current weight
and state. In practice we also use a memory for storing weights of the problem.

16

5.5 Locally-informed proposals (LIP)

Locally-informed proposals (abbrv. LIP) are more complicated family of methods, they
include more computational labor. The approach with uniform distribution of candidates
is less complex, but forces us to make a lot of iterations. It is because choosing neighbours
randomly conveys no information, so it is required for us to check a lot of neighbours until
we �nd a better one. This idea was mentioned in [5] and we will try to apply it e�ciently.

This time, we want to compute a local distribution of neighbours and sample them
from it. This is why the method is called locally-informed proposals (abbrv. LIP) � we
compute a local proposal. It has to be done e�ciently too, because number of neighbours
grows quadratically with the number of vertices (so for dsj1000 its 1 million neighbours).
The candidate matrix related to such a procedure is irreducible, aperiodic and satis�es
Qi,j > 0 ⇐⇒ Qj,i > 0.

5.5.1 Theoretical background

The idea is to balance the increase in the probability of neighbour with decrease of reverse
probability, such that it will be easy to compute. One way is to use locally-informed
proposals, which will be proportional to the same quotient of target distribution as in
M-H step, so:

Qi,j ∝ e
−(wj−wi)

τ .

Here τ > 0 is temperature parameter. The distribution is chosen in such a way, so that
we can easily group up the terms in acceptance criterion:

πjQj,i

πiQi,j

= e−(wj−wi) · e
−(wi−wj)

τ

e
−(wj−wi)

τ

· Cj

Ci

= e(−(wj−wi)(1− 2
τ)) · Cj

Ci

,

where Ci, Cj are normalizing constants. Setting τ = 2 terms in exponent cancel out, so
we are left with normalizing constants. Again using logarithms is bene�cial in computer
science, so the acceptance criterion has form:

log

(
πjQj,i

πiQi,j

)
=

(
−(wj − wi)

(
1− 2

τ

))
+ log (Cj)− log (Ci) .

The temperature parameter that achieve balance is τ = 2 and was considered in [6].

5.5.2 Computational considerations

The observation here is similar to the previous one � when we have di�erences in weights
for all neighbours of a starting tour, we can update them and only some of them change
in a signi�cant way. Then we can calculate softmax on neighbour weights di�erences.
One might notice now, that this procedure is not symmetrical, because softmax can be
di�erent when the sums dividing exponent of weights di�erences will be di�erent. Most
notably, when a neighbour will have a high transition probability, getting back will have
lower probability, because it means that there is more distance. This means that we will
be using M-H algorithm (not only Metropolis).

Let us show this on an example: assume that we have chosen tour σ and its neighbour
σ′ that is connected with swapping indices k and l. So for this situation we have tours:

σ = (σ(1), . . . , σ(k − 1), σ(k), σ(k + 1), . . . , σ(l − 1), σ(l), σ(l + 1), . . .)

σ′ = (σ(1), . . . , σ(k − 1), σ(l), σ(k + 1), . . . , σ(l − 1), σ(k), σ(l + 1), . . .)

17

Now we need to think of a neighbour connected to some other swap for both of those
tours, let's say r and s. When r and s are far away from k and l we have almost the same
tours, but with a swap on k and l. So the neighbours σr,s, σ

′
r,s of σ and σ′ respectively

look like:

σr,s =(. . . , σ(r − 1), σ(s), σ(r + 1), . . . , σ(s− 1), σ(r), σ(s+ 1), . . . ,

. . . , σ(k − 1), σ(k), σ(k + 1), . . . , σ(l − 1), σ(l), σ(l + 1), . . .)

σ′
r,s =(. . . , σ(r − 1), σ(s), σ(r + 1), . . . , σ(s− 1), σ(r), σ(s+ 1), . . . ,

. . . σ(k − 1), σ(l), σ(k + 1), . . . , σ(l − 1), σ(k), σ(l + 1), . . .)

This time we need di�erences in weights, so assuming we know it for neighbour σr,s of
σ, we can see that di�erence in weight of neighbour σ′

r,s of σ′ is the same, because the
weights changed only on r and s place, which are not connected to k and l. This case
covers most of the neighbours.

Let us think now about the case, when swap of r and s indices happen somewhere
close to k and l, for example k = r − 1:

σr,s =(. . . , σ(k − 1), σ(k), σ(s), σ(r + 1), . . . ,

. . . , σ(s− 1), σ(r), σ(s+ 1), . . . , σ(l − 1), σ(l), σ(l + 1), . . .)

σ′
r,s =(. . . , σ(k − 1), σ(l), σ(s), σ(r + 1), . . . ,

. . . , σ(s− 1), σ(r), σ(s+ 1), . . . , σ(l − 1), σ(k), σ(l + 1), . . .)

This time the di�erence in weights σr,s and σ′
r,s cannot be the same, because there are

di�erent edges connected to s. That forces us to manually get weights corresponding
to di�erent edges and update the di�erences in weights. It means, that some neighbours
(swaps) have to be considered separately. These are the scenarios when r or s are elements
of {(k − 1), k, (k + 1), (l − 1), l, (l + 1)}.

5.5.3 Example

To see this problem let us focus on some easier example and then generalize it to get an
estimation of number of steps required to update weights.

Let us set k = 2 and l = 7, then the set of indices to consider is {1, 2, 3, 6, 7, 8} and
the permutations:

σ = (1, 2, 3, 4, 5, 6, 7, 8, 9, . . .)

σ′ = (1, 7, 3, 4, 5, 6, 2, 8, 9, . . .).

We can represent neighbours as a tuple of integers, which mean the indices to swap. The
Table 5.5.1 represents neighbours. To not repeat elements, we can focus only on the upper
triangle of a matrix of those tuples.

Light gray cells are neighbours with one index swapped close to considered set, and
darker gray cells are neighbours with two indices swapped close to considered set.

Unfortunately there is no other way rather than compute manually weight di�erence
for darker gray cells, because their edges close to k = 2 and l = 7 are completely di�erent.
These do not cause a lot of computation, because there are only

(
6
2

)
= 6·5

2
= 15 cases.

We can say something more about light gray ones, where there is only one index close
to the considered set. Let us set r = 3 and s = 9, which means that we are looking for

18

2 3 4 5 6 7 8 9 10
1 (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) (1,9) · · ·
2 (2,3) (2,4) (2,5) (2,6) (2,7) (2,8) (2,9) · · ·
3 (3,4) (3,5) (3,6) (3,7) (3,8) (3,9) · · ·
4 (4,5) (4,6) (4,7) (4,8) (4,9) · · ·
5 (5,6) (5,7) (5,8) (5,9) · · ·
6 (6,7) (6,8) (6,9) · · ·
7 (7,8) (7,9) · · ·
8 (8,9) · · ·
9

. . .

Table 5.5.1: Neighbour representation.

weight di�erences of neighbours obtained by swapping 3 and 9. So the neighbours have
form:

σ3,9 = (1, 2, 9, 4, 5, 6, 7, 8, 3, . . .)

σ′
3,9 = (1, 7, 9, 4, 5, 6, 2, 8, 3, . . .).

Let us denote d3,9 = wσ − wσ3,9 as a di�erence between current permutation and its
neighbour connected to swap r = 3 and s = 9. Similarly d′3,9 = wσ′ − wσ′

3,9
is a di�erence

between neighbour of current permutation and its neighbour. Assume we know vector of
di�erences for σ and its weight wσ. Given that, we also know wσ3,9 , because

wσ3,9 = wσ + d3,9.

Consider di�erence of weight di�erences here:

d39 − d′3,9 = wσ − wσ3,9 − (wσ′ − wσ′
3,9
),

after rearranging we have:

d′3,9 = d3,9 − (wσ − wσ′) + (wσ3,9 − wσ′
3,9
).

We are interested in getting d′3,9. The only term in this equation not known to us is
wσ3,9 −wσ′

3,9
(we know (wσ −wσ′) because we know di�erences in weights of σ). It is easy

to see when looking at σ3,9 and σ′
3,9 that :

wσ3,9 − wσ′
3,9

= (w1,2 + w2,9 + w6,7 + w7,8)− (w1,7 + w7,9 + w6,2 + w2,8).

We can generalize that equation for any p /∈ {1, 2, 3, 6, 7, 8}:

wσ3,p − wσ′
3,p

= f3(p) = C + w2,p − w7,p.

This di�erence is some function of p, changing this index will not change values of any
other weights. So we can have a general formula for any r ∈ {1, 2, 3, 6, 7, 8} and s /∈
{1, 2, 3, 6, 7, 8}. Constant C and indices 2, 7 will change depending on k, l and their
relative position to r.

Now we know, that for a given row from {1, 2, 3, 6, 7, 8} we can compute the di�erence
d′3,9. We can do it e�ciently using vector operations � we need one vector subtraction
and one computation of constant C. In reality vector subtraction is just subtracting each
number for each other, so for each r ∈ {1, 2, 3, 6, 7, 8} we have at most n (number of
vertices) operations and we have 6 distinct choices of r, so 6 · n operations.

19

5.5.4 Implementation

To sum up all the information we summarize it in Algorithm (3). As mentioned before, we
will be working on logarithms, because they are better suited for computer computations.

The core of this algorithm is still the same, but we need to add more complicated
part with computing neighbour weights di�erences and updating them after each step of
a main loop.

Unfortunately, there are more practical things to consider this time. In this algorithm
we are actually calculating softmax function, nothing is vanishing here. Computing
exponents of large numbers ends up with∞ or −∞ on a computer. Also, for datasets like
dsj1000 there are around 1 million neighbours, and we need to keep probabilities with
higher precision, that is a lot of memory to use.

Working on di�erences can alleviate this problem (for some cases). Let us say we know
weight of our current tour wσ and its neighbours weights vector wσ. We can think of every
weight in this vector as a di�erence between it and current tour weight: dσ[i] = wσ + di.
By dσ[(i, j)] we mean the index of a swap i, j (it needs to be found).

Algorithm 3 Locally-informed proposals algorithm

1: Choose a tour σ ∈ Sn.
2: X0 ← σ
3: Compute weight wσ.
4: Compute all neighbour weight di�erences dσ.
5: s(dσ) = softmax(dσ)
6: for i = 0, 1, . . . do
7: Sample σ′ ∼ s(dσ).
8: Find k, l connected with swapping.
9: wσ′ ← wσ + dσ[(k, l)]

10: dσ′ ← dσ

11: dσ′ ← update_di�erences(dσ′)
12: s(dσ′) = softmax(dσ′)
13: Sample U ∼ Unif(0, 1).
14: if log(U) ≤ min (0,−(wσ′ − wσ) + log(s(dσ′)[(k, l)])− log(s(dσ)[(k, l)])) then
15: Xi+1 ← Xi

16: Xi+1(k), Xi+1(l)← Xi+1(l), Xi+1(k)
17: wσ ← wσ′

18: dσ ← dσ′

19: else

20: Xi+1 ← Xi

21: end if

22: end for

The main algorithm uses a sub-algorithm 4 which updates weights in swaps that
we need to consider separately. It uses function get_di�erence, which is just getting
appropriate weights to remove and add.

5.5.5 Complexity

This algorithm is more complicated and it signi�cantly lowers the performance. This time
for each step of M-H algorithm we need to compute softmax to get probabilities, which

20

Algorithm 4 update_di�erences

Input: dσ′

Output: dσ′

1: for r = k − 1, k, k + 1, l − 1, l, l + 1 do
2: for s = r + 1, . . . , n do

3: dσ′ [(r, s)]← get_di�erence(dσ′ [(r, s)])
4: end for

5: end for

6: for s = k − 1, k, k + 1, l − 1, l, l + 1 do
7: for r = 1, 2, . . . l do
8: dσ′ [(r, s)]← get_di�erence(dσ′ [(r, s)])
9: end for

10: end for

is already a hard task, because of computing exponents. Besides that we need to sample
from (sometimes) long vector. There is also a sub-procedure with two loops.

The function get_di�erence is not implemented as in example, because we wanted to
avoid working with large matrices and so avoid problems with memory. In practice one
would need to keep matrix of weights, which would be of size n × n and the same for
di�erences. More than a half of its elements would be empty (zeros) so we would waste
a lot of memory and also do many unnecessary operations when adding or subtracting
vectors from those matrices. Not using large matrices was also our goal when choosing
MCMC methods for this problem.

Space complexity is also constant, but a lot bigger than previously, because we need
to keep two long vectors of probabilities (or weight di�erences).

5.6 Simulated annealing

There is one important parameter that can be used both with random neighbours and
locally-informed proposals and is associated with cooling. It has its roots within physics
and is connected to energetic states of particles and Boltzmann distribution. The idea is
to describe a probability of state using a cooling parameter tk (di�erent than τ in LIP)
such that it reminds the cooling of a metal and may change with each step:

πi =
e

−Ei
tk

C
,

where C is normalizing constant.The quotient of probabilities then is:

πj

πi

= e
Ei−Ej

tk

Setting this parameter high constitutes to all of the states being equally likely and with
low value of parameter we have probability concentrated in the state with minimal energy.

Using tk as a function of step in acceptance criterion will give us a non-homogeneous
MC. Setting it to a constant value will produce a homogeneous MC.

21

6 Results

In this section we will present the results of simulations and compare them with previous
methods and true optima.

6.1 Initial condition

First we have to check if changing the initial state makes any di�erence to the output of
an algorithm. This is achieved via setting a di�erent seed and repeating algorithms for
the same number of iterations. Seeds guarantee us the di�erent �randomness� with each
seed. It is because the generators are only generating pseudo-random numbers which
we can control. Both random neighbours (abbrv. RN) and locally-informed proposals
(abbrv. LIP) algorithms will have the same seeds and in our case these are 1, 2, 3, 4.
We use default parameters of temperature τ = 2 and cooling parameter tk = 1 and run
simulation for 5000 iterations.

(a) Random neighbours. (b) Locally-informed proposals.

Figure 6.1.1: Di�erent initial states for berlin52.

(a) Random neighbours. (b) Locally-informed proposals.

Figure 6.1.2: Di�erent initial states for kroA150.

Both plots 6.1.1 and 6.1.2 suggest that initial state matters for �nding a better tour,
but it is not changing the behavior of algorithms.

22

6.2 Simulated annealing

Before we proceed with comparing algorithms we need to �nd out if simulated annealing is
improving them. We will compare parameters tk = 1 and tk =

3
log(k+2)

where k is a number
of step. The temperature parameter for LIP will stay at default τ = 2. Every simulation
has the same seed and the number of iterations for these simulations is 1 million.

(a) berlin52. (b) kroA150.

Figure 6.2.1: Di�erent cooling parameters for berlin52 and kroA150.

(a) att532. (b) dsj1000.

Figure 6.2.2: Di�erent cooling parameters for att532 and dsj1000.

This time to see the di�erence between cooling parameters we had to extend number
of iterations to 1 million. This number of steps is not viable for LIP, so only RN were
used. We can see slight the improvement at the end of iterations, which has potential
when the distances are huge.

6.3 Temperature

The same needs to be done with temperature parameter τ . It was proven in [6] that
τ = 2 is optimal for balancing out likelihoods, but maybe for this problem it is worth
considering as it has an in�uence on probabilities. Every simulation has the same seed
and the number of iterations for these simulations is 10000.

23

(a) berlin52. (b) kroA150.

Figure 6.3.1: Di�erent temperature parameters for berlin52 and kroA150.

(a) att532. (b) dsj1000.

Figure 6.3.2: Di�erent temperature parameters for att532 and dsj1000.

The plots 6.3.1 and 6.3.2 present LIP algorithm with the same initial state and
di�erent temperature parameter τ = 0.01, 0.5, 5, 20. For two datasets the results are
almost identical, while on two others some temperatures o�er better results, but they are
not consistent with each other. This is why we opted for τ = 2.

6.4 Algorithms comparison

Now we are able to present all the results, we will be using τ = 2, two di�erent cooling
parameters tk = 1, tk =

3
log(k+2)

and two di�erent methods: random neighbours (RN) and

locally-informed proposals (LIP). Every simulation has the same seed and the number of
iterations is 20000.

The plots 6.4.1, 6.4.2, 6.4.4, 6.4.5 present distance of a solution as a function of number
of iterations. Both algorithms start at the same state and have the same seed. We can se
how quickly they diverge. First steps of LIP algorithm is taking the best neighbours it can
and stays there or makes small improvements. Prolonged stays happen in smaller datasets
as there is less deviation at each step and it is harder to choose a better neighbour. At
the beginning LIP algorithm has obviously better results in all cases.

Additionally the plot 6.4.3 compares two methods but using smaller number of iterations
and only for two smaller datasets. The number of vertices is lower, so LIP �nds better

24

(a) tk = 1. (b) tk = 3
log(k+2) .

Figure 6.4.1: Comparing RN and LIP for berlin52 with di�erent cooling parameters.

(a) tk = 1. (b) tk = 3
log(k+2) .

Figure 6.4.2: Comparing RN and LIP for kroA150 with di�erent cooling parameters.

(a) berlin52, tk = 1. (b) kroA150, tk = 1.

Figure 6.4.3: Comparing RN and LIP for berlin52 and kroA150 with low number of
iterations.

solutions quickly and it is easier to compare the methods with fewer iterations. We can see,
that less than 100 iterations are enough to create a massive gap between these methods.

The Tables 6.4.1 and 6.4.2 present comparison of those two methods for di�erent

25

(a) tk = 1. (b) tk = 3
log(k+2) .

Figure 6.4.4: Comparing RN and LIP for att532 with di�erent cooling parameters.

(a) tk = 1. (b) tk = 3
log(k+2) .

Figure 6.4.5: Comparing RN and LIP for dsj1000 with di�erent cooling parameters.

RN LIP
dataset dist. time [s] ratio dist. time [s] ratio
berlin52 11344 1.32 1.50 9276 116 1.23
kroA150 62467 1.24 2.36 53988 454 2.04
att532 165445 1.38 5.98 78150 2462 2.82
dsj1000 199343433 1.5 10.68 89105687 6439 4.78

Table 6.4.1: Methods comparison, tk = 1, 20000-th step.

RN LIP
dataset dist. time [s] ratio dist. time [s] ratio
berlin52 11374 1.27 1.51 9276 113 1.23
kroA150 62591 1.28 2.36 53988 450 2.04
att532 165387 1.38 5.97 80969 2467 2.92
dsj1000 199343433 1.55 10.68 89105687 6437 4.78

Table 6.4.2: Methods comparison, tk =
3

log(k+2)
, 20000-th step.

26

cooling parameters. They contain data from the last point of plots above (20000-th step).
They contain distances of tours, time the algorithm took and ratio of the solution to the
optimum. For bigger datasets the ratio is growing, which is behaving as expected � the
more vertices to search through, so more iterations are needed to reach optimum. The
LIP algorithm outperforms RN, given small amount of iterations. We can also notice that
the cooling parameter does not cause any signi�cant di�erence.

RN LIP
dataset step distance time [s] step distance time [s]
berlin52 20000 11344 1.32 27 11198 0.22
kroA150 20000 62467 1.24 139 62459 3.64
att532 20000 165445 1.38 199 165247 24.65
dsj1000 20000 199343433 1.5 256 199338468 80.54

Table 6.4.3: Amount of time and number of steps required for LIP algorithm to reach the
result of RN after 20000 steps, tk = 1.

The Table 6.4.3 presents amount of time and number of steps required for LIP algorithm
to reach the best result of RN (after 20000 steps) with the same seeds and cooling tk = 1.
As we can see, LIP algorithm needs a lot less iterations to get shorter tours and time
required for that is also favorable. It is especially visible with smaller datasets, that do
not need a lot of computation, and times there are only in seconds.

27

7 Conclusions

In this section we will share our conclusions regarding a new approach of locally-informed
proposals.

Every result con�rms that LIP algorithm is decreasing the distance quicker than
randomly choosing neighbours, no matter the dataset. This is understandable because
at the beginning it easily chooses the best neighbours. As time (iterations) passes by,
there is a di�culty in �nding neighbour that improves the distance, so locally-informed
proposal is �attening and algorithm slowly converges to some value. What is important,
that this value is almost always smaller than the random neighbours algorithm.

The last table (6.4.3) suggests that using LIP algorithm is still useful, because it
reaches better results in feasible time. Only �rst hundreds iterations really matter and
this is where the potential of this method lies.

Only datasets with small number of vertices (52, 150) have close results, as the number
of neighbours is smaller, so random picking is able to reach smaller distances quicker.

This of course, comes at a price of computational complexity. The LIP algorithm
is considerably slower for a longer run. While random neighbours oscillates within 1.5
seconds for each dataset, LIP algorithm reaches over 1.5 hour for the biggest dataset and
maximum number of iterations done in simulations.

It may seem that the time here is an obvious drawback and there is no point in further
studying this approach. However, there are still many areas to improve, which makes this
method promising.

7.1 Areas to improve

There are some important areas to improve upon, that could signi�cantly speed up the
algorithm. There are two signi�cant problems: updating weights and sampling from the
softmax of di�erences in weights.

Updating di�erences in weights depends on problem, so for some it could be done
really e�ciently. As we mentioned earlier, getting weights for edges is not a constant
complexity, because we need to search through a matrix of weights for many vertices
(there many more than vertices), which grows quadratically with number of vertices. One
way to alleviate this problem is to use interning, a method in Python3 language, which
saves objects into Python's memory for quick access. Of course, better knowledge of data
structures could be helpful, for example, maybe looking through dictionaries is faster than
through lists. This is lowering the complexity.

Another approach could be using concurrent computing, when calculating vector
of di�erences of edges. The idea would be to compute a few parts of this vector in
parallel. The calculations do not depend on each other, so it is a viable method. It could
signi�cantly improve the speed. The only problem would be shared resource � matrix of
edges. It needs a careful planning.

The problem of sampling is actually a close problem to the one that we are trying
to solve now � how to sample e�ciently using MCMC methods. Sampling from locally-
informed proposal in this thesis is done by sampling exactly from a long vector, but it
seems that the locally-informed proposal is a perfect candidate for M-H algorithm. We
know that quotient of LIP is:

Qj,i

Qi,j

=
e

−(wi−wj)

τ

e
−(wj−wi)

τ

· Cj

Ci

= e
−2
τ (wi − wj) ·

Cj

Ci

,

28

and logarithm of that has form:

log

(
Qj,i

Qi,j

)
=
−2
τ

(wi − wj) + log(Cj)− log(Ci).

So if we take this as a acceptance criterion in M-H algorithm, we just need 2 weights
and updating normalizing sums. The open question is, how to choose a proposal for this
algorithm, such that it will be an e�cient way of sampling. This has enormous potential
in reducing complexity cost.

There is also a problem of choosing temperature and cooling parameters. It could
be done by cross-validation, but it adds another complexity level on top of already slow
algorithm.

To summarize, there is plenty of ways to improve the algorithm, not only through
mathematical analysis but also through smarter employment of specialized tools and
improving quality of code in Python3. The LIP algorithm has a potential for �nding
minima and solving many NP-hard problems with fewer iterations and maybe in the
future with amount of less time.

29

8 Codebase

In this section we will brie�y cover the codebase of our simulations and will walk reader
through, so that he can have a basic understanding of code and will be able to use it by
him/herself. The codebase can be found on Github [1].

The project has two packages: mcmc and tsp. The mcmc package is a backbone of
whole project, as it contains probability constructs like MC and M-H algorithm. The
package tsp contains classes representing traveling salesman problem.

8.1 mcmc

The most important modules of this package contain classes representing some probabilistic
constructs:

• StochasticProcess � represents stochastic processes, it is a building block of other
classes, as they inherit from it. It needs a function of next_state, that tells a
process how to move in time. It has ability to remember its past and sample from
this process.

• MarkovChain � it is derived from StochasticProcess and represents a Markov chain.
It implements the function next_state as a function that does not need to know the
past, only the current state.

• MonteCarloMarkovChain � it is derived fromMarkovChain and represents a Markov
chain constructed with Metropolis-Hastings algorithm. It is an abstract class which
needs to implement next_candidate and log_ratio among many others. These are
di�erent depending on a procedure one is following. One does not need to specify
a candidate matrix, because it is cumbersome, rather a procedure of selecting a
candidate. Depending on that log_ratio will be a di�erent function too.

Besides those classes there are some that are toy examples likeHomogenousMarkovChain
and MetropolisHastings that were used for testing. There are also some helpful functions
that are used throughout the package.

8.2 tsp

This package contains classes that are required to represent traveling salesman problem
and its solution using MCMC methods. There are two important classes:

• TSPath � represents a salesman tour and is mostly used as a container for attributes
of that tour (so problem information, weight, neighbours etc.). It has functions that
are �nding edges, its weights and computing neighbour weights.

• TravelingSalesmenMCMC � represents a Markov chain that is traveling through
tour space. It is derived from MonteCarloMarkovChain so it implements all needed
functions. It can be used both with random neighbours or with locally-informed
proposals methods.

There is also whole dataset used for simulations and all results obtained while working on
this thesis. The package of course contains many more modules or scripts that are used
for results exploration.

30

References

[1] Homeomorphistic/locally-informed-proposals-mcmc: Locally-informed proposals
in metropolis-hastings algorithm with applications. https://github.com/

Homeomorphistic/Locally-informed-proposals-MCMC. (Accessed on 06/03/2022).

[2] Tsplib. http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/index.html.
(Accessed on 06/01/2022).

[3] O. Häggström et al. Finite Markov chains and algorithmic applications, volume 52.
Cambridge University Press, 2002.

[4] C. Karpi«ski. On use of Monte Carlo Markov Chains to decode encrypted text and to
solve travelling salesman problem. 2020.

[5] C. J. Maddison, D. Duvenaud, K. J. Swersky, M. Hashemi, and W. Grathwohl. Oops
I Took A Gradient: Scalable Sampling for Discrete Distributions. 2021.

[6] G. Zanella. Informed proposals for local MCMC in discrete spaces, volume 115. Taylor
& Francis, 2020.

31

https://github.com/Homeomorphistic/Locally-informed-proposals-MCMC
https://github.com/Homeomorphistic/Locally-informed-proposals-MCMC
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/index.html

	Introduction
	Markov chains
	Basic terminology and assumptions
	Definition and basic properties
	Irreducibility
	Periodicity

	Stationarity and ergodicity
	Reversibility

	Markov chain Monte Carlo methods
	Metropolis-Hastings algorithm

	Traveling salesman problem
	Statement of the problem
	Complexity
	Dataset

	Approximate solutions
	Basic idea
	Metropolis-Hastings algorithm
	Candidates
	Random neighbours (RN)
	Computational considerations
	Implementation
	Complexity

	Locally-informed proposals (LIP)
	Theoretical background
	Computational considerations
	Example
	Implementation
	Complexity

	Simulated annealing

	Results
	Initial condition
	Simulated annealing
	Temperature
	Algorithms comparison

	Conclusions
	Areas to improve

	Codebase
	mcmc
	tsp

	References

