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1 Introduction

One of the most important aspects of the geometric group theory are groups acting
geometrically on the spaces of non-positive curvature, one of the most discussed types of
which are CAT(0) spaces. It turns out that for a CAT(0) space X there can be defined the
so called boundary at infinity ∂X of a space X. Since the boundary at infinity depends
mostly on global properties of the given CAT(0) space, then a natural hypothesis can be
formulated: for every group Γ acting geometrically on CAT(0) spaces X1 and X2, the
boundaries ∂X1 and ∂X2 are homeomorphic. It turns out, however, that this is not true;
the example of a group Γ that acts on two spaces X1 and X2 with non-homeomorphic
boundaries was first given by C. B. Croke and B. Kleiner in [3]. Although the general
result is false, we can still obtain some information about the boundary ∂X from the
group Γ that acts geometrically on X.

In this paper I will prove that a boundary of a CAT(0) space X on which a free product
of infinite groups Γ = G ∗ H acts geometrically can be described in terms of limit sets
ΛG and ΛH of groups G and H. Formally, this result is stated in the following main
theorem:

Main theorem

Let Γ = G ∗H be a free product of infinite groups and suppose that Γ acts geometrically
on a proper CAT(0) space X. Then ∂X can be expressed in terms of ΛG and ΛH in the
following way:

∂X ∼= ⊔̃(ΛG,ΛH),

where ⊔̃ denotes the operation of dense amalgam of compact metric spaces.

Section 2 contains basic definitions and lemmas that will be used throughout the paper
and are sufficiently well described in the literature. This section splits into four parts
describing CAT(0) spaces and their boundaries, geometric group actions, free products
of groups and dense amalgams. Most of the proofs in this chapter have been omitted
and replaced only by relevant literature references. Section 3 consists of definitions and
lemmas concerning limit sets that are also very important and used throughout this paper
but were only vaguely mentioned in available sources. Section 4 introduces the concept
of R-separation and proves important, technical lemmas that are the basis of reasoning
in the next two chapters. Section 5 consists of six general but technical lemmas that
are necessary for proving lemmas in the next section. Section 6 is focused on describing
geodesic rays in ∂x0X. In the first part of this section the notion of generating sequences
is described in such a way that it coincides with definition of prolongation given in Section
4 and definitions of limit sets from Section 3. In the second part of this section, several
lemmas describing geodesic rays and estimating distances between them are proven. Fi-
nally the main theorem is proven in Section 7. Section 8 is written in a slightly looser
language and describes open problems that were encountered during the writing of this
paper and presents some ideas about how the main theorem could be possibly generalised.

2 Preliminaries

In this section I will present the most important facts that will be used throughout this
paper. Those definitions and theorems are mostly well-known and were described in
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detail in [2], [1], [5] and [6]. For several of the lemmas, I found it appropriate to present
their proofs, however in most cases I chose to refer the reader to the relevant sources.

2.1 CAT(0) spaces

Definition 2.1 (Geodesic metric space)
Let (X, d) be a metric space, let x1, x2 ∈ X and d(x1, x2) = D. We will say that
γ : [0, D] → X is a geodesic path between x1 and x2 if γ(0) = x1, γ(D) = x2 and for all
t1, t2 ∈ [0, D] we have d(γ(t1), γ(t2)) = |t1 − t2|. We will say that the constant D is the
lenght of the geodesic path γ.

We will say that a metric space (X, d) is geodesic if for each pair of points x1, x2 there is
a geodesic path between x1 and x2.

Definition 2.2 (Geodesic triangle)
Let (X, d) be a geodesic space. An object ∆ consisting of three points A1, A2, A3 ∈ X and
three geodesic segments γ[A1,A2], γ[A1,A3], γ[A2,A3] between A1 and A2, A1 and A3, A2 and A3

respectively is called a geodesic triangle.

Definition 2.3 (Comparison triangle)
Let (X, d) be a geodesic metric space and let A1, A2, A3 ∈ X. Any triple of points
A∗

1, A
∗
2, A

∗
3 ∈ R2 is called a comparison triple for A1, A2, A3 if for any i, j ∈ {1, 2, 3} the

equality holds
d(Ai, Aj) = de(A

∗
i , A

∗
j),

where de is the euclidean metric on R2. Moreover we will denote the unique geodesic
between A∗

i , A
∗
j in (R2, de) as η[A∗

i ,A
∗
j ]
. A geodesic triangle consisting of points A∗

i and
geodesic segments η[A∗

i ,A
∗
j ]

is called a comparison triangle for A1, A2, A3.

Fact 2.4
For every triple of points A1, A2, A3 from geodesic space X there exists a comparison
triangle for A1, A2, A3, and it is unique up to congruence.

Definition 2.5
Let (X, d) be a geodesic space, A,B,C ∈ X, and let γ[A,B], γ[A,C], γ[B,C] be geodesic
paths between A and B, A and C, B and C respectively. We will say that a geodesic
triangle consisting of points A,B,C and geodesics γ[A,B], γ[A,C], γ[B,C] in X is thin if for
any comparison triangle consisting of points A∗, B∗, C∗ ∈ R2 and geodesic segments
η[A∗,B∗], η[A∗,C∗], η[B∗,C∗] the following conditions holds:

∀s∈[0,d(A,B)]∀t∈[0,d(A,C)] d(γ[A,B](s), γ[A,C](t)) ⩽ de(η[A∗,B∗](s), η[A∗,C∗](t)),

∀s∈[0,d(A,B)]∀t∈[0,d(B,C)] d(γ[A,B](s), γ[B,C](t)) ⩽ de(η[A∗,B∗](s), η[B∗,C∗](t)),

∀s∈[0,d(A,C)]∀t∈[0,d(B,C)] d(γ[A,C](s), γ[B,C](t)) ⩽ de(η[A∗,C∗](s), η[B∗,C∗](t)).

Definition 2.6 (CAT(0) space)
A space (X, d) is called a CAT(0) space if it is geodesic and if every geodesic triangle in
X is thin.

Definition 2.7 (Proper metric space)
We will say that a space (X, d) is proper if every closed ball in X is compact.
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Fact 2.8
Every proper metric space is complete.

Definition 2.9
Let (X, d) be a CAT(0) space and let γ1 and γ2 be geodesic paths of equal length D in a
CAT(0) space (X, d). Then we define the distance function f : [0, D] → [0,∞) between
γ1, γ2 as follows:

f(t) = d(γ1(t), γ2(t)).

The following lemma is well-known and considered an important result about geometry
of CAT(0) spaces. A detailed proof can be found in [2] (Proposition II.2.2).

Lemma 2.10
Let γ1 and γ2 be geodesic paths of equal length D in a CAT(0) space (X, d). Then the
distance function between γ1 and γ2 is convex.

Definition 2.11 (Geodesic ray)
Given a CAT(0) space (X, d), we say that a curve γ : [0,∞) → X is a geodesic ray if for
every s, t ⩾ 0 the following equality holds:

d(γ(s), γ(t)) = |s− t| .

Moreover we will say that γ starts at x0 if γ(0) = x0

Definition 2.12 (Asymptotic geodesic rays)
Two geodesic rays γ1 and γ2 are asymptotic if there exists a constant K ⩾ 0 such that
for every t ⩾ 0 we have:

d(γ1(t), γ2(t)) ⩽ K.

We denote asymptoticity of γ1 and γ2 by γ1 ∼ γ2.

Fact 2.13
The relation ∼ on the set of geodesic rays in a CAT(0) space is an equivalence relation.

The following lemma is important for defining the boundary at infinity of a CAT(0) space.
For a proof see [2] (Proposition II.8.2).

Lemma 2.14
Let (X, d) be a proper CAT(0) space. For every point x0 ∈ X and for every geodesic ray γ
there exist a unique geodesic ray γ′ starting at x0 such that γ ∼ γ′.

Definition 2.15
Let (X, d) be a proper CAT(0) space. We will denote the set of all geodesic rays starting
at x0 by ∂x0X.

Definition 2.16 (Boundary at infinity)
Let (X, d) be a proper CAT(0) space. The set ∂X is defined as:

∂X = {γ : γ is a geodesic ray in X} / ∼ .

∂X is sometimes called the boundary at infinity of X (or simply boundary of X).

Fact 2.17
There is a canonical bijection between ∂x0X and ∂X that maps elements of ∂x0X to their
equivalence classes in ∂X.
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Definition 2.18 (Topology on the boundary)
There is a natural topology τx0 on ∂x0X generated by the basis of open sets

Nx0(R, ε, γ) = {γ′ ∈ ∂x0X : d(γ(R), γ′(R)) < ε} ,

where R > 0, ε > 0 and γ is a geodesic ray starting at x0.

We define a topology on ∂X as the topology induced from τx0 by the canonical bijection
between ∂x0X and ∂X.

Fact 2.19
The topology on ∂X does not depend on the choice of the base point x0.

The following lemma is a particularly useful fact about boundaries at infinity. For more
details see [2] (Definition II.8.6).

Lemma 2.20
For a proper CAT(0) space X, its boundary at infinity ∂X is compact.

It turns out that boundaries of proper CAT(0) spaces are metrizable. This fact can be
most directly deduced from the following observation from [5] (Proposition 9.6).

Definition 2.21 (Osajda’s metric)
Let (X, d) be a proper CAT(0) space. For a positive constant A we define Osajda’s met-
ric dA on ∂x0X as follows:

dA(γ, γ
′) =

{
0 iff γ = γ′

1
M

, where M = inf {t ∈ [0,∞) : d(γ(t), γ′(t)) ⩾ A} otherwise.

Lemma 2.22
dA is a metric on ∂x0X and it is compatible with the topology τx0 on ∂x0X.

2.2 Švarc-Milnor lemma

The concepts below are explained in more details in section I.8 of [2].

Definition 2.23 (Geometric group action)
Let (X, d) be a proper geodesic space and let Γ be a group that acts on X by isometries.
Then we say that the action of Γ is

• properly discontinuous if for every compact set K ⊆ X the set {g ∈ Γ : K ∩ g ·K}
is finite;

• cocompact if there exist a compact set K ⊆ X such that
⋃

g∈Γ g ·K = X.

We will say that action of Γ is geometric if it is properly discontinuous and cocompact.
We will denote the fact that Γ acts on X geometrically by Γ ↷ X.

Definition 2.24 (Word metric)
Let Γ be any group and A its set of generators. Then we define the word metric associated
with A as a metric on Γ given by the formula dA(g, g

′) = n, where n is the length of
g′g−1 expressed as a shortest word over generators from A and their inverses. Moreover
we will denote |g|A = dA(1, g).
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Definition 2.25 (Quasi-isometries)
Let (Y, dY ) and (X, dX) be two metric spaces. Given some constants L ⩾ 1 and A ⩾ 0, a
map f : Y → X is called an (L,A)-quasi-isometric embedding if for every y1, y2 ∈ Y we
have the following estimates:

1

L
dY (y1, y2)− A ⩽ dX(f(y1), f(y2)) ⩽ LdY (y1, y2) + A.

A map f : Y → X is A-quasi-dense if for every x ∈ X there is a y ∈ Y such that
dX(x, f(y)) ⩽ A.

A map f : Y → X is called an (L,A)-quasi-isometry if f is both an (L,A)-quasi-isometric
embedding and is A-quasi-dense. A map is called a quasi-isometry if it is an (L,A)-quasi-
isometry for some L ⩾ 1, A ⩾ 0.

The following theorem is one of the most important facts about groups acting geometri-
cally on geodesic spaces. It was presented and proven in [2] (Proposition I.8.19).

Lemma 2.26 (Švarc-Milnor lemma)
Let Γ be a group acting geometrically on a geodesic space (X, d). Then Γ is finitely
generated and for any finite generating set S and any x0 ∈ X the map f : Γ → X given
by the formula f(g) = g · x0 is a quasi-isometry between (Γ, dS) and (X, d).

2.3 Free products

Definitions and lemmas in this subsection are described in more detail and proven in
section IV of [1].

Definition 2.27 (Free product)
Let G and H be groups with presentations ⟨SG;RG⟩ and ⟨SH ;RH⟩ respectively. Then
the free product of G and H is defined as the group G ∗H = ⟨SG ⊔ SH ;RG ⊔RH⟩, where
⊔ denotes the operation of disjoint union.

Lemma 2.28
The free product G ∗H is well-defined and does not depend on choice of presentations for
G and H.

Lemma 2.29 (Normal form lemma)
Each element w from the group G∗H can be uniquely written in the form w = g1h1...gnhn,
where n ⩾ 1, g1 ∈ G, g2, ..., gn ∈ G \ {1}, h1, h2, ..., hn−1 ∈ H \ {1} and hn ∈ H. We will
call this form the normal form of w.

Fact 2.30
Let G and H be groups with presentations ⟨SG;RG⟩ and ⟨SH ;RH⟩ respectively. Moreover
let w ∈ G ∗H and let g1h1...gNhN be the normal form of w. Then

|g1h1...gNhN |A = |g1|A + |h1|A + ...+ |gN |A + |hN |A ,

where A = SG ⊔ SH .

2.4 Dense amalgams

Definition 2.31
Let X be a metrisable topological space and let Y = {Y1, Y2, ...} be a countable family of
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subsets of X. We say that Y is null with respect to the metric d on X if limn→∞ diam(Yn) =
0 where diam(A) is the diameter of set A in the metric d.

Lemma 2.32
Let X be a compact topological space and let d1, d2 be metrics compatible with the topology
on X. We will denote diameters in metrics d1, d2 as diam1, diam2 respectively. Moreover
let Yn be a family of subsets of X such that limn→∞ diam1(Yn) = 0. Then we have
limn→∞ diam2(Yn) = 0.

Proof. Let us assume on the contrary that the diameters diam2(Yn) do not converge to 0.
Then there exist ε > 0 such that there exist a subsequence Ynk

such that diam2(Ynk
) > ε.

Let ynk
, y′nk

∈ Ynk
be such that d2(ynk

, y′nk
) ⩾ ε. Now we take such a subsequence nkl

of nk that liml→∞ ynkl
and liml→∞ y′nkl

both exist. Since liml→∞ diam1(Ynkl
) = 0, then

liml→∞ ynkl
= liml→∞ y′nkl

. Therefore liml→∞ d2(ynkl
, ynkl

) = 0 and thus d2(ynkl
, ynkl

) < ε

for sufficiently large l. This contradiction completes the proof.

Definition 2.33 (Null family)
We say that the family Y is null if it is null with respect to any metric compatible with
the topology on X.

An important concept apperaring in the main theorem of this paper is the operation of
dense amalgam. This operation was described in great detail in [6].

Definition 2.34 (Dense amalgam of compact metric spaces)
Let X1, X2, ..., Xn be a collection of nonempty compact metric spaces. Then the dense
amalgam of X1, X2, ..., Xn is defined as the unique (up to homeomorphism) compact
metric space Y that can be equipped with a countable infinite family Y of subsets of Y
partitioned as Y = Y1 ⊔ Y2 ⊔ ... ⊔ Yn such that

(i) The subsets in Y are pairwise disjoint and for each i ∈ {1, 2, ..., n} the family Yi

consist of embedded copies of the space Xi;

(ii) the family Y is null;

(iii) each Z ∈ Y is a boundary subset of Y (i.e. its complement is dense);

(iv) for each i, the union of the family Yi is dense in Y ;

(v) any two points of Y which do not belong to the same subset from Y can be separated
from each other by a clopen subset Q ⊆ Y which is Y-saturated (i.e. such that any
element of Y is either contained in or disjoint with Q).

The dense amalgam of nonempty, compact metric spaces X1, ..., Xn will be denoted by
⊔̃(X1, ..., Xn).

3 Limit sets

Definition 3.1
Let (X, d) be a CAT(0) space and let γn be a sequence consisting of geodesic rays or
geodesic paths. Moreover let γ : [0,∞) → X be a geodesic ray. Then we will write

lim
n→∞

γn = γ
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if for every t ⩾ 0 the point γn(t) is well-defined for almost every n ∈ N and we have
limn→∞ γn(t) = γ(t).

Lemma 3.2
Let γn be a sequence of geodesic paths of length dn in a proper CAT(0) space (X, d)
starting at a base point x0 ∈ X. If limn→∞ dn = ∞, then there exist a geodesic ray γ and
a subsequence γnk

of γn such that limk→∞ γnk
= γ.

Proof. Since limn→∞ dn = ∞, for each R > 0 the sequence γn(R) is well-defined for
almost every n ∈ N. Moreover, γn(R) ∈ B(x0, R) for each n such that dn ⩾ R, so since
X is proper then B(x0, R) is compact, so there exist a subsequence γnk

(R) of γn(R) that
converges. From Lemma 2.10, we can conclude that for all t ∈ [0, R] we have the following
estimation:

d(γnk
(t), γnk′

(t)) ⩽
t

R
d(γnk

(R), γnk′
(R)) ⩽ d(γnk

(R), γnk′
(R)).

So, since γnk
(R) was a Cauchy sequence, then γnk

(t) is also a Cauchy sequence, so it
converges. Now we will define the sequences γ

(k)
n . Let γ

(0)
n = γn and γ

(k+1)
n will be such

a subsequence of γ(k)
n that γ

(k+1)
n (k + 1) converges. We will denote γ̃k = γ

(k)
k . Obviously

for all k ∈ N the sequence γ̃n(k) from some point is a subsequence of γ(k)
n (k). Therefore

from the reasoning above we know that γ̃n(t) is convergent for any t ∈ [0,∞). Now let
γ(t) = limn→∞ γ̃n(t). We will show that γ is a geodesic ray. Let s, t ∈ [0,∞). From the
triangle inequality we have:

d(γ(t), γ(s)) ⩽ d(γ(t), γ̃n(t)) + d(γ̃n(t), γ̃n(s)) + d(γ̃n(s), γ(s))

= |s− t|+ d(γ(t), γ̃n(t)) + d(γ(s), γ̃n(s))

d(γ(t), γ(s)) ⩾ d(γ̃n(t), γ̃n(s))− d(γ̃n(s), γ(s))− d(γ̃n(s), γ(s))

= |s− t| − d(γ(t), γ̃n(t))− d(γ(s), γ̃n(s))

Therefore, from the squeeze theorem, d(γ(t), γ(s)) = |t− s|, which shows that γ is a
geodesic ray and ends the proof.

The following observation concerning CAT(0) spaces will be needed in the later parts of
this section.

Lemma 3.3 (Triangle cutting lemma)
Let A,B,C be any points in a CAT(0) space (X, d), such that d(A,B) = c, d(A,C) = b
and d(B,C) = a where b ⩾ c. Then d(B, γ[A,C](c)) ⩽ a.

Proof. Let A∗, B∗, C∗ be the vertices of a comparison triangle for A,B,C and let D∗ be
such a point on the edge A∗C∗ that |A∗D∗| = |A∗B∗|. Since A∗B∗D∗ is an isosceles
triangle then ∢A∗D∗B∗ ⩽ π

2
and thus ∢C∗D∗B∗ ⩾ π

2
. Therefore from the definition of

CAT(0) space and the cosine formula we know that

d(B,C) = |B∗C∗| =
√

|B∗D∗|2 + |D∗C∗|2 − 2 |B∗D∗| |D∗C∗| cos (∢C∗D∗B∗)

⩾
√
|B∗D∗|2 = |B∗D∗| ⩾ d(B, γ[A,C](c)).
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Limit sets are subsets of boundary that are necessary to formulate the main theorem of
this paper. They were described in [4] (section 3).

Definition 3.4
Let X be a proper CAT(0) space and let A ⊆ X. Then the limit set of A with respect to
x0 is defined as

Λx0A =
{
γ ∈ ∂x0X : γ = lim

n→∞
γ[x0,an] for an ∈ A

}
,

where x0 ∈ X is a base point.

The lemma below guarantees that the limit sets are well-defined and do not depend on
the choice of a base point x0.

Lemma 3.5
Let (X, d) be a proper CAT(0) space, let A ⊆ X and let x0, x1 ∈ X. Then for every
γ ∈ Λx0A there exist γ′ ∈ Λx1A such that γ ∼ γ′.

Proof. Let an ∈ A be such sequence that γ = limn→∞ γ[x0,an]. Since

lim
n→∞

d(x1, an) ⩾ lim
n→∞

d(x0, an)− d(x0, x1) = ∞

then from Lemma 3.2 there is such subsequence ank
of an that there exist a geodesic ray

γ′ = limk→∞ γ[x1,ank
] ∈ Λx1A. We will show that γ ∼ γ′. Let ε > 0, t ⩾ 0 be any numbers

and let k ∈ N be such that d(γ(t), γ[x0,ank
](t)) < ε and d(γ′(t), γ[x1,ank

](t)) < ε. Without
loss of generality we assume that d(x0, ank

) ⩾ d(x1, ank
), let x2 = γ[x0,ank

](d(x1, ank
)).

From triangle inequality we have d(x0, ank
) − d(x1, ank

) ⩽ d(x0, x1) and therefore from
convexity of the distance function for geodesic segments γ[x1,ank

], γx0,x2 we know that

d(γ[x0,ank
](t), γ[x1,ank

](t)) = d(γ[x0,x2](t), γ[x1,ank
](t)) ⩽ max {d(x0, x1), d(ank

, x2)} = d(x0, x1).

Therefore
d(γ(t), γ′(t)) ⩽ d(γ(t), γ[x0,ank

](t)) + d(γ[x0,ank
](t), γ[x1,ank

](t))

+d(γ[x1,ank
](t), γ

′(t)) ⩽ d(x0, x1) + 2ε,

which proves that γ ∼ γ′.

Definition 3.6 (Limit set)
The limit set of A is defined as

ΛA =

( ⋃
x0∈X

Λx0A

)
/ ∼,

where ∼ is the relation of asymptoticity on geodesic rays. From Lemma 3.5 we conclude
that ΛA is naturally identified with set Λx0A for any base point x0 ∈ X. Topology on
the set ΛA is defined as the topology induced from ∂X.

Moreover, let Γ be a group such that Γ ↷ X, let G < Γ be a subgroup of Γ and let k ∈ Γ
be an element of Γ. Then we can define the limit set of a subgroup and limit set of a
coset as follows:

ΛG = Λ(G · x)
Λ(kG) = Λ(kG · x)

for an x ∈ X.
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Lemma 3.7
Let Γ be any group such that Γ ↷ X for a proper CAT(0) space (X, d), let G < Γ and
let x, x′ ∈ X. Then Λ(G · x) = Λ(G · x′).

Proof. Let x0 ∈ X be a fixed point and let gn ∈ G be such that limn→∞ γ[x0,gn·x] = γ
for a geodesic ray γ. Let t ⩾ 0, ε > 0 be any numbers and let n ∈ N be such that
d(x0, gn ·x) ⩾ max

{
2td(x,x′)

ε
+ d(x, x′), t+ d(x, x′)

}
and d(γ[x0,gn·x](t), γ(t)) <

ε
2
. Then we

have

d(x0, gn ·x′) ⩾ d(x0, gn ·x)−d(gn ·x, gn ·x′) = d(x0, gn ·x)−d(x, x′) ⩾ max

{
2td(x, x′)

ε
, t

}
.

Let s = min {d(x0, gn · x), d(x0, gn · x′)}. From triangle cutting lemma and convexity of
the distance function we can now estimate

d(γ(t), γ[x0,gn·x′](t)) ⩽ d(γ(t), γ[x0,gn·x](t)) + d(γ[x0,gn·x](t), γ[x0,gn·x′](t))

<
ε

2
+

t

s
d(γ[x0,gn·x](s), γ[x0,gn·x′](s)) ⩽

ε

2
+

t

s
d(gn · x, gn · x′) =

ε

2
+

t

s
d(x, x′) = ε,

which ends the proof.

Lemma 3.8
Let X be a proper CAT(0) space, let x ∈ X and let Γ a group be such that Γ ↷ X.
Moreover let G < Γ. Then for any two cosets kG and k′G we have ΛkG ∼= Λk′G.

Proof. We will show that for any k ∈ Γ we have ΛG ∼= ΛkG. Let x ∈ X be any fixed
point. Then we have

Λ(kG) = Λ(kG · x) ∼= Λx(kG · x) ∼= Λk·x(kG · x) ∼= Λx(G · x) ∼= Λ(G · x) = ΛG,

which ends the proof.

4 Separation lemma

Definition 4.1 (Separating set)
Let (X, d) be a pathwise connected space and let x1, x2 ∈ X. We will say that a set
K ⊆ X separates x1 from x2 if x1 and x2 are in different pathwise connected components
of X \K.

Definition 4.2 (R-separating set)
Let (X, d) be a metric space and x1, x2 ∈ X. We will say that a set I ⊆ X R-separates x1

from x2 if there exist S1, S2 ⊆ X such that X \I = S1⊔S2, x1 ∈ S1, x2 ∈ S2, d(x1, I) ⩾ R,
d(x2, I) ⩾ R, and d(S1, S2) ⩾ R.

Definition 4.3 (A-neighbourhoods)
Let (X, d) be a metric space and K ⊆ X. We define the A-neighbourhood of K in X as
the set

{x ∈ X : d(x,K) ⩽ A} .

We will denote the A-neighbourhood of a set K by NA(K).
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Lemma 4.4 (R-separation lemma)
Let (Y, dY ) be a metric space, let (X, dX) be a pathwise connected space and let f : Y → X
be a (L,A)-quasi-isometry. Moreover let y1, y2 be elements of Y such that there exists a
set I ⊆ Y (3LA + ε)-separates y1 from y2 for some ε > 0. Then the set K = NA(f(I))
separates f(y1) from f(y2) in X.

Proof. Firstly, we acknowledge the fact that f(y1), f(y2) ̸∈ K. Without loss of gen-
erality we will show that f(y1) ̸∈ K. Assume on the contrary that f(y1) ∈ K. Then
dX(f(I), f(y1)) ⩽ A, so by the definition of quasi-isometry we have the following estimate:

A ⩾ dX(f(I), f(y1)) = inf
y∈I

dX(f(y), f(y1)) ⩾ inf
y∈I

1

L
dY (y, y1)− A

⩾
3LA+ ε

L
− A = 2A+

ε

L
> A.

We get a contradiction that ends this part of the proof.

Now let us assume that K does not separate f(y1) from f(y2). Then there exists a path
c in X \ K between f(y1) and f(y2), so there is also a sequence x1, x2, ..., xn such that
x1 = f(y1), xn = f(y2) and for all i ∈ {1, 2, ..., n− 1} we have dX(xi, xi+1) <

ε
L
. From the

definition of a quasi-isometry we know that there exists y ∈ Y such that dX(x, f(y)) ⩽ A,
so let z1, z2, ..., zn ∈ Y be such that dX(xi, f(zi)) ⩽ A for all i ∈ {1, 2, ..., n}. But then
for all i ∈ {1, 2, ..., n− 1} we have the following estimates:

dY (zi, zi+1) ⩽ LdX(f(zi), f(zi+1))+LA ⩽ L(dX(f(zi), xi)+dX(xi, xi+1)+dX(xi+1, f(zi+1)))

+LA ⩽ L(A+
ε

L
+ A) + LA < 3LA+ ε.

Since the set I (3LA+ ε)-separates z1 from zn, there exist sets S1, S2 such that we have
S1 ⊔ S2 = X \ I, z1 ∈ S1, z2 ∈ S2, d(x1, I) ⩾ R, d(x2, I) ⩾ R and d(S1, S2). Therefore
z1 ∈ S1 and zn ̸∈ Sn, so let i0 ∈ {1, 2, ..., n} be the biggest index such that zi0 ∈ S1. Then
we have zi0+1 ̸∈ S2: assume on the contrary that zi0+1 ∈ S2. We can now estimate that

3LA+ ε ⩽ dY (S1, S2) ⩽ dY (zi0 , zi0+1) < 3LA+ ε.

This contradiction proves that zi0+1 ̸∈ S2, therefore zi0+1 ∈ I. But then we have the
following estimate:

dX(xi0+1, f(I)) ⩽ dX(xi0+1, f(zi0+1)) ⩽ A,

So xi0+1 ∈ K and we have a contradiction with our choice of x1, ..., xn, which ends the
proof.

Definition 4.5
Let Γ = G ∗H be a free product of groups and let w, v be elements of Γ. Moreover let
w = g1h1...gnhn and v = g̃1h̃1...g̃ñh̃ñ be the normal forms of w and v. Then w is called a
prolongation of v if

• w ̸= 1 when v = 1;

• n ⩾ ñ and for all i ∈ {1, ..., ñ− 1} we have the equalities g̃i = gi, h̃i = hi, g̃ñ = gñ,
and hñ ̸= 1 when h̃ñ = 1;

• n > ñ and for all i ∈ {1, ..., ñ} we have the equalities g̃i = gi, h̃i = hi otherwise.
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Lemma 4.6
Let G and H be groups with presentations ⟨AG;RG⟩ and ⟨AH ;RH⟩ respectively. Moreover,
let Γ = G ∗H and let A = AG ⊔AH be a set of generators of Γ. Furthermore, let R > 0
and g, g1, g2 ∈ Γ. If g1 is a prolongation of g, g2 is not a prolongation of g, dA(g, g1) ⩾ 2R
and dA(g, g2) ⩾ 2R then the set I = B(g,R) R-separates g1 from g2 in (Γ, dA).

Proof. Let
S1 = {g′ ∈ Γ \ I : g′ is a prolongation of g}

and
S2 = {g′ ∈ Γ \ I : g′ is not a prolongation of g}

be sets from the definition of R-separation. Obviously S1 ⊔ S2 = Γ \ I, and moreover we
have the estimates:

dA(g1, I) ⩾ dA(g1, g)− sup
g′′∈I

dA(g, g
′′) > 2R−R = R

dA(g2, I) ⩾ dA(g2, g)− sup
g′′∈I

dA(g, g
′′) > 2R−R = R,

hence we only need to show that dA(S1, S2) ⩾ R. Let g′ ∈ S1, g
′′ ∈ S2 be any elements of

S1 and S2 respectively. Without loss of generality let’s assume that g(1)h(1)...g(N)h(N) is
the normal form of g and h(N) ̸= 1. Since g′ is a prolongation of g then g′ has a normal
form g(1)h(1)...g(N)h(N)g(N+1)h(N+1)...g(M)h(M). Moreover, since g′′ is not a prolongation
of g, g′′ has the normal form g(1)h(1)...g(L)h(L)ĝ(L+1)ĥ(L+1)...ĝ(K)ĥ(K) where L < N and
at least one of the inequalities g(L+1) ̸= ĝ(L+1), h(L+1) ̸= ĥ(L+1) hold. Without loss of
generality let’s assume that g(L+1) ̸= ĝ(L+1). We know that dA(g

′, g′′) is equal to the
length of(

ĝ(K)
)(−1)

...
(
ĥ(L+1)

)(−1) (
ĝ(L+1)

)(−1)
g(L+1)h(L+1)...g(N)h(N)g(N+1)h(N+1)...h(M)

expressed as the shortest word over generators A. Then∣∣∣∣(ĝ(K)
)(−1)

...
(
ĥ(L+1)

)(−1) (
ĝ(L+1)

)(−1)
g(L+1)h(L+1)...g(N)h(N)g(N+1)h(N+1)...h(M)

∣∣∣∣
A

=
∣∣∣(ĝ(K)

)(−1)
∣∣∣
A
+ ...+

∣∣∣(ĝ(L+1)
)(−1)

∣∣∣
A
+
∣∣g(L+1)

∣∣
A+ ...+

∣∣h(N)
∣∣
A+

∣∣g(N+1)
∣∣
A+ ...+

∣∣h(M)
∣∣
A

=
∣∣∣(ĝ(K)

)(−1)
...
(
ĝ(L+1)

)(−1)
g(L+1)...h(N)

∣∣∣
A
+
∣∣g(N+1)...h(M)

∣∣
A =

∣∣g′g(−1)
∣∣
A+
∣∣g′′g(−1)

∣∣
A ⩾ 2R.

Therefore dA(S1, S2) ⩾ R, which ends the proof.

5 Some preparatory technical lemmas

Lemma 5.1
Let (Y, dY ) be a metric space and (X, dX) be a proper CAT(0) space such that there exists
an (L,A)-quasi-isometry f : Y → X. Moreover, let yn be such sequence of points in Y
that there exist a radius R > 0 and a positive constant δ such that for every ε > 0 there
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exist a point ỹ ∈ Y and natural number N such that the ball B(ỹ, R) (3LA+ δ)-separates
y0 from all points yn for n > N and

1

dY (y0, ỹ)
< ε.

Then there exists a geodesic ray γ such that limn→∞ γ[f(y0),f(yn)] = γ.

Proof. Let us denote γn = γ[f(y0),f(yn)]. First we will show that

lim
n→∞

dX(f(y0), f(yn)) = ∞.

Let D > 0. We will show that there is a natural number N such that for every n > N
we have dX(f(y0), f(yn)) > D. Let ε = 1

L(D+2A)+R
, let ỹ ∈ Y and N ∈ N be such that

I = B(ỹ, R) (3LA + δ)-separates y0 from all points yn for n > N and 1/dY (y0, ỹ) < ε.
Then according to the R-separation lemma the set K = NA(f(I)) separates f(y0) from
f(yn). Thus the geodesic path between f(y0) and f(yn) has to pass through K. Therefore
we have the following estimations:

dX(f(y0), f(yn)) ⩾ dX(f(y0), K) ⩾
1

L
dY (y0, I)− 2A

⩾
1

L
(d(y0, ỹ)−R)− 2A >

1

Lε
− R

L
− 2A = D,

and thus limn→∞ dX(f(y0), f(yn)) = ∞.

From Lemma 3.2 we conclude that there is a subsequence γnk
of γn such that limk→∞ γnk

= γ
for a geodesic ray γ. Now we will show that limn→∞ γn = γ. Let t ⩾ 0 and ϵ > 0 be
any constants. We will show that there exists Ñ such that for any n > Ñ we have
dX(γn(t), γ(t)) < ϵ. Let ε̃ > 0 be such that

ε̃ < min

(
ϵ

2Lt(2LR + 3A) + ϵR + 2LAϵ
,

1

R + 2LA+ Lt

)
.

Let Ñ ∈ N and ŷ ∈ Y be such that for every n > Ñ the ball Ĩ = B(ŷ, R) (3LA +
δ)-separates y0 from all points yn, and 1

dY (y0,ŷ)
< ε̃. Furthermore let k be such that we

have nk > N and dX(γnk
(t), γ(t)) < ϵ

2
. We know from the R-separation lemma that

for all n > Ñ the set K̃ = NA(f(Ĩ)) separates f(y0) apart from f(yn), and thus the
geodesic paths γn and γnk

have to pass through K̃. Let s, s′ be such that γn(s) ∈ K̃ and
γnk

(s′) ∈ K̃. Then we can estimate:

min(s, s′) ⩾ dX(f(y0), K) ⩾ dX(f(y0), f(Ĩ))− A ⩾
1

L
dY (y0, Ĩ)− 2A

⩾
1

L
dY (y0, ŷ)−

R

L
− 2A >

1

Lε̃
− R

L
− 2A.

Since ε̃ < 1
R+2LA+Lt

then we know that 1
Lε̃

− R
L
− 2A > t. We can also estimate

dX(γn(s), γnk
(s′)) ⩽ diam(K) ⩽ diam(f(I)) + 2A ⩽ L diam(I) + 3A ⩽ 2LR + 3A.

Therefore from convexity of the distance function and triangle cutting lemma we have

dX(γn(t), γnk
(t)) ⩽

t

min(s, s′)
dX(γn(min(s, s′)), γnk

(min(s, s′)))
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⩽
t

min(s, s′)
dX(γn(s), γnk

(s′)) <
t(2LR + 3A)

1/Lε̃−R/L− 2A
.

Since ε̃ < ϵ
2Lt(2LR+3A)+ϵR+2LAϵ

then

t(2LR + 3A)

1/Lε̃−R/L− 2A
<

ϵ

2
.

Now we have

dX(γn(t), γ(t)) ⩽ dX(γn(t), γnk
(t)) + dX(γnk

(t), γ(t)) <
ϵ

2
+

ϵ

2
= ϵ,

which ends the proof.

Lemma 5.2
Let (Y, dY ) be a metric space and (X, dX) be a proper CAT(0) space such that there exists
an (L,A)-quasi-isometry f : Y → X. Moreover let yn be such a sequence of points in
Y that there exists a geodesic ray γ such that γ = limn→∞ γ[f(y0),f(yn)]. Furthermore, let
the positive number δ, natural number N and bounded set I ⊆ Y be such that for every
n > N , I (3LA + δ)-separates y0 from yn. Then there exist an s ∈ [0,∞) such that
γ(s) ∈ NA(f(I)).

Proof. Let t ⩾ supy∈I LdY (y0, y) + 2A + 1 be a sufficiently large constant. Moreover we
take n0 > N such that dX(γ[f(y0),f(yn0 )]

(t), γ(t)) < 1. Since

sup
x∈NA(f(I))

dX(f(y0), x) ⩽ sup
y∈I

dX(f(y0), f(y)) + A ⩽ L sup
y∈I

dY (y0, y) + 2A

the entire geodesic segments between γ[f(y0),f(yn0 )]
(t), γ(t) and between γ[f(y0),f(yn0 )]

(t),
f(yn0) do not intersect the set NA(f(I)). Therefore, since the geodesic segments between
γ[f(y0),f(yn0 )]

(t), γ(t) and between γ[f(y0),f(yn0 )]
(t), f(yn0) are outside of NA(f(I)) then γ(t)

and f(yn0) are in the same connected component of X \ NA(f(I)). But from the R-
separation lemma we know that the set NA(f(I)) separates f(y0) from f(yn0), and thus
it also separates (y0) from γ(t), therefore there exist an s ∈ [0, t] such that we have
γ(s) ∈ NA(f(I)).

Lemma 5.3
Let (Y, dY ) be a metric space and (X, dX) be a proper CAT(0) space such that there exists
an (L,A)-quasi-isometry f : Y → X. Moreover, let yn and ỹn be such sequences of points
in Y that y0 = ỹ0 and there exist geodesic rays γ, γ̃ such that limn→∞ γ[f(y0),f(yn)] = γ and
limn→∞ γ[f(ỹ0),f(ỹn)] = γ̃. Furthermore let δ > 0, R > 0, N ∈ N and ŷ ∈ Y be such that
for every natural number n > N the ball I = B(ŷ, R) (3LA+ δ)-separates y0 from yn and
ỹ0 from ỹn, where dY (y0, ŷ) > R+2AL. Then we have the following estimate in Osajda’s
metric:

d3A+2RL(γ, γ̃) ⩽
L

dY (y0, ŷ)−R− 2AL

Proof. By Lemma 5.2 we know that there exist s, s̃ ∈ [0,∞) such that γ(s), γ̃(s̃) ∈ K
where K = NA(f(I)). Therefore by the triangle cutting lemma we know that

dX(γ(min {s, s̃}), γ̃(min {s, s̃})) ⩽ diam(K).
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We now can write the following estimates:

diam(K) ⩽ 2A+ diam(f(I)) ⩽ 3A+ 2RL

and

min {s, s̃} ⩾ dX(f(y0), K) ⩾ dX(f(y0), f(I))−A ⩾
1

L
dY (y0, I)−2A ⩾

dY (y0, ŷ)−R− 2AL

L
.

Thus from convexity of the distance function we know that

inf {t ∈ [0,∞) : dX(γ(t), γ̃(t)) ⩾ 3A+ 2LR}) ⩾ min {s, s̃} ⩾
dY (y0, ŷ)−R− 2AL

L

and therefore
d3A+2RL(γ, γ̃) ⩽

L

dY (y0, ŷ)−R− 2AL
.

Lemma 5.4
Let (Y, dY ) be a metric space and let (X, dX) be a proper CAT(0) space such that there
exists an (L,A)-quasi-isometry f : Y → X. Moreover, let yn and ỹn be such se-
quences of points in Y that y0 = ỹ0 and there exist geodesic rays γ and γ̃ such that
limn→∞ γ[f(y0),f(yn)] = γ and limn→∞ γ[f(ỹ0),f(ỹn)] = γ̃. Suppose there exist a ball I =
B(ŷ, R), a natural number N and a positive constant δ such that for every n,m > N the
set I (3LA + δ)-separates yn from ỹn. Then we have γ ̸= γ̃, and in Osajda’s metric d2
on ∂x0X we have the following inequality:

d2(γ, γ̃) ⩾
1

LdY (y0, ŷ) + LR + 2A+ 1
.

Proof. Let ŷ ∈ Y , R > 0, δ > 0 and N ∈ N be such that for all n1, n2 ⩾ N the set
I = B(ŷ, R) (3LA+ δ)-separates yn1 from yn2 . Then we can estimate:

sup {dX(f(y0), x) : x ∈ NA(f(I))} ⩽ sup {dX(f(y0), f(y)) : y ∈ I}+ A

⩽ sup {LdY (y0, y) + A : y ∈ I}+ A ⩽ LdY (y0, ŷ) + LR + 2A.

Let now t = LdY (y0, ŷ) + LR + 2A + 1 and N̂ ∈ N will be such that for all n ⩾ N̂ we
have the following estimates:

dX(γ(t), γ[f(y0),f(yn)])(t)) < 1,

dX(γ̃(t), γ[f(ỹ0),f(ỹn)])(t)) < 1.

From the triangle inequality we can write:

dX(γ(t), NA(f(I))) ⩾ dX(f(y0), γ(t))− sup {dX(f(y0), x) : x ∈ NA(f(I))}

⩾ t− LdY (y0, ŷ) + LR + 2A = 1,

dX(γ̃(t), NA(f(I))) ⩾ dX(f(ỹ0), γ̃(t))− sup {dX(f(ỹ0), x) : x ∈ NA(f(I))}

⩾ t− LdY (y0, ŷ) + LR + 2A = 1.
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Therefore geodesic paths between γ[f(y0),f(yn)](t) and f(yn), γ[f(ỹ0),f(ỹn)](t) and f(ỹn),
γ[f(y0),f(yn)](t) and γ(t), γ[f(ỹ0),f(ỹn)](t) and γ(t) are not going through the set NA(f(I)).
Therefore γ(t) and f(yn) are in the same pathwise connected component of X \NA(f(I)),
and γ̃(t) and f(ỹn) are in the same pathwise connected component of X \ NA(f(I)).
Since by the R-separation lemma the set NA(f(I)) separates yn apart from ỹn in X, then
NA(f(I)) is also separates γ(t) apart from γ̃(t) in X. Therefore γ(t) ̸= γ̃(t), which implies
γ ̸= γ̃. Moreover

dX(γ(t), γ̃(t)) ⩾ dX(γ(t), NA(f(I))) + dX(γ̃(t), NA(f(I))) ⩾ 2

and thus in Osajda’s metric d2 we have

d2(γ, γ̃) ⩾
1

t
=

1

LdY (y0, ŷ) + LR + 2A+ 1
.

Lemma 5.5
Let (X, d) be a proper CAT(0) space, let γ ∈ ∂x0X be a geodesic ray, let xn ∈ X be a
sequence such that limn→∞ d(γ(0), xn) = ∞. Suppose that there exists a constant A ⩾ 0
such that for any n there exists t ⩾ 0 such that d(γ(t), xn) ⩽ A. Then limn→∞ γ[γ(0),xn] =
γ.

Proof. Let A > ε > 0, s ⩾ 0 be any constants. We will show that for sufficiently large
n we have d(γ[γ(0), xn](s), γ(s)) < ε. Let N ∈ N be such that for any n > N we have
d(γ(0), xn) >

sA
ε
+ A. We know that there exists a t ⩾ 0 such that d(γ(t), xn) ⩽ A, thus

from triangle inequality we have t ⩾ d(γ(0), xn) − d(γ(t), xn) > sA
ε

. For simplicity of
notation let t′ = min {t, d(γ(0), xn)}. Then from convexity and triangle cutting lemma
we have

d(γ(s)γ[γ(0),xn](s)) ⩽
s

t′
d(γ(t′), γ[γ(0),xn](t

′))) <
s

sAε
d(γ(t), xn) ⩽ ε

which ends the proof.

Lemma 5.6
Let (Y, dY ) be a metric space and let (X, dX) be a proper CAT(0) space such that there
exists an (L,A)-quasi-isometry f : Y → X. Moreover, let γ ∈ ∂x0X be a geodesic ray
and let yn ∈ Y be a sequence such that there exists a geodesic ray γ′ ∈ ∂x0X such that
γ′ = limn→∞ γ[f(y0),f(yn)]. Suppose that there exist a point ŷ ∈ Y , radius R > 0 and natural
number N such that the ball I = B(ŷ, R) (3LA + δ)-separates y0 from yn for n > N . If
there exists a number t ⩾ 6L2A+2Lδ+4A such that d(f(ŷ), γ(t)) ⩽ A then we have the
following inequality

d2RL+4A(γ, γ
′) ⩽

1

t− 6L2A− 2Lδ − 4A

where d2RL+4A denotes the Osajda’s metric on ∂x0X.

Proof. From Lemma 5.2 we conclude that there exist s ∈ [0,∞) such that we have
γ′(s) ∈ NA(f(I)). We can now estimate that:

dX(γ(t), γ
′(s)) ⩽ dX(γ(t), f(ŷ)) + dX(f(ŷ), γ

′(s)) ⩽ A+ diam(NA(f(I)))
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⩽ 3A+ diam(f(I)) ⩽ 2RL+ 4A.

Therefore we have min {s, t} ⩾ t − dX(γ(t), γ
′(s)) ⩾ t − 2RL − 4A. From convexity of

the distance function and triangle cutting lemma we obtain that

dX(γ(t− 2RL− 4A), γ′(t− 2RL− 4A) ⩽ dX(γ(min {s, t} , γ′(min {s, t}))

⩽ dX(γ(t), γ
′(s)) ⩽ 2RL+ 4A

and thus
d2RL+4A(γ, γ

′) ⩽
1

t− 2RL− 4A
.

6 Categorisation of geodesic rays

Definition 6.1 (generating sequence)
Let Γ = G ∗ H be a free product of groups. We will say that a sequence kn ∈ Γ is
generating when it is of one of three types:

(i) there are elements g1 ∈ G, g2, g3, ... ∈ G \ {1} and h1, h2, h3, ... ∈ H \ {1} such that
kn = g1h1g2h2...gnhn for all n ∈ N;

(ii) there are elements g1 ∈ G, g2, g3, ..., gm ∈ G \ {1}, h1, h2, h3, ..., hm ∈ H \ {1} and
ĝ1, ĝ2, ĝ3, ... ∈ G such that kn = g1h1g2h2...gmhmĝn for all n ∈ N;

(iii) there are elements h1 ∈ H, h2, h3, ..., hm ∈ H \ {1}, g1, g2, g3, ..., gm ∈ G \ {1} and
ĥ1, ĥ2, ĥ3, ... ∈ G such that kn = h1g1h2g2...hmgmĥn for all n ∈ N.

Definition 6.2 (separated sequences)
Let Γ = G ∗H be a free product of groups. We will say that generating sequences kn, k′

n

are separated if one of the following conditions is satisfied:

• kn, k
′
n are both of type (i) and kn ̸= k′

n for some n ∈ N;

• kn, k
′
n are both of type (ii), kn = g1h1...gmhmĝn and k′

n = g′1h
′
1...g

′
m′h′

m′ g̃n for all
n ∈ N and either m ̸= m′ or gihi ̸= g′ih

′
i for some i ∈ {1, 2, ...,m};

• kn, k
′
n are both of type (iii), kn = h1g1...hmgmĥn and k′

n = h′
1g

′
1...h

′
m′g′m′h̃n for all

n ∈ N and either m ̸= m′ or higi ̸= h′
ig

′
i for some i ∈ {1, 2, ...,m};

• kn, k
′
n are of different types.

Definition 6.3
Let Γ = G ∗ H be a free product of groups and let kn, k

′
n be generating sequences.

An element g1h1...gmhm ∈ Γ, where g1 ∈ G, h1, h2, ..., hm−1 ∈ H \ {1} , g2, g3, ..., gm ∈
G\{1} , hm ∈ H is called a separator between kn and k′

n if there exist an N ∈ N such that
for any natural number n > N one of the sequences kn, k′

n consists only of prolongations
of g1h1...gmhm and the other consists only of elements that are not prolongations of
g1h1...gmhm. Element g1h1...gmhm ∈ Γ is called the minimal separator if it is a separator
between kn and k′

n if it is a separator of minimal "length" m. The element g1h1...gmhm ∈ Γ
is called a common prefix of generating sequences kn, k

′
n if there exists an N ∈ N such

that for every natural n > N both kn and k′
n are prolongations of g1h1...gmhm.
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Lemma 6.4
Let kn, k′

n be separated generating sequences. Then there exists a unique minimal separator
g1h1...gmhm between kn and k′

n, and it additionally satisfies the following property: there
exists an N ∈ N such that for every natural n > N both kn and k′

n are prolongations of

• g1h1...hm−1gm if hm ̸= 1;

• g1h1...gm−1hm−1 if hm = 1.

Proof. The proof consist of analyzing many analogical cases. In each of the cases the
fact that the additional property from the statement holds is obvious and we omit its
justification.

• Both kn and k′
n are of type (i). Let kn = g1h1...gnhn, k′

n = g′1h
′
1...g

′
nh

′
n for all n ∈ N

and let m be the smallest number such that km ̸= k′
m. If gm ̸= g′m then g1h1...hm−1gm

is the minimal separator. If gm = g′m then g1h1...gmhm is the minimal separator.

• Both kn and k′
n are of type (ii), kn = g1h1...gmhmĝn and k′

n = g′1h
′
1...g

′
m′h′

m′ g̃n.
Without loss of generality assume that m ⩾ m′. If for all i ∈ {1, 2, ...,m′} we have
gihi = g′ih

′
i, then g1h1...gm′hm′gm′+1 is the minimal separator. If there exists an

i ∈ {1, ...,m′ − 1} such that for all j ∈ {1, ..., i} we have gjhj = g′jh
′
j and gi ̸= g′i,

then g1h1...hi−1gi is the minimal separator. If there exists an i ∈ {1, ...,m′ − 1}
such that for all j ∈ {1, ..., i} we have gjhj = g′jh

′
j and gi = g′i, then g1h1...gihi is

the minimal separator.

• Both kn and k′
n are of type (iii), kn = h1g1...hmgmĥn and k′

n = h′
1g

′
1...h

′
m′g′m′h̃n.

Without loss of generality assume that m ⩾ m′. If for all i ∈ {1, 2, ...,m′} we have
higi = h′

ig
′
i, then h1g1...hm′gm′hm′+1 is the minimal separator. If there exists an

i ∈ {1, ...,m′ − 1} such that for all j ∈ {1, ..., i} we have hjgj = h′
jg

′
j and hi ̸= h′

i

then h1g1...gi−1hi is the minimal separator. If there exists an i ∈ {1, ...,m′ − 1}
such that for all j ∈ {1, ..., i} we have hjgj = h′

jg
′
j and hi = h′

i then h1g1...higi is
the minimal separator.

• One of the kn, k
′
n is of type (i) and the other is of type (ii). Without loss of

generality we assume that kn is of type (i). Let kn = g1h1...gnhn for all n ∈ N
and let k′

n = g′1h
′
1...g

′
mh

′
mĝn. If for all i ∈ {1, 2, ...,m′} we have gihi = g′ih

′
i, then

g1h1...gm′hm′gm′+1 is the minimal separator. If there exists an i ∈ {1, ...,m′ − 1}
such that for all j ∈ {1, ..., i} we have gjhj = g′jh

′
j and gi ̸= g′i then g1h1...hi−1gi

is the minimal separator. If there exists an i ∈ {1, ...,m′ − 1} such that for all
j ∈ {1, ..., i} we have gjhj = g′jh

′
j and gi = g′i then g1h1...gihi is the minimal

separator.

• One of the kn, k
′
n is of type (i) and the other is of type (iii). Without loss of

generality assume that kn is of type (i). Let kn = g1h1...gnhn for all n ∈ N and
let k′

n = h′
1g

′
1...h

′
m′g′m′ĥn. If g1 ̸= 1 and h′

1 ̸= 1, then g1 is the minimal separator.
If g1 = 1 and h′

1 = 1, then g1h1 is the minimal separator. If g1 = 1 but h′
1 ̸= 1

and for all i ∈ {1, ...,m′} we have higi+1 = h′
ig

′
i, then g1h1...hm′gm′+1 is the minimal

separator. If g1 = 1 but h′
1 ̸= 1 and there exists an i ∈ {1, ...,m′ − 1} such that for

all j ∈ {1, ..., i} we have hjgj+1 = h′
jg

′
j and hi ̸= h′

i, then g1h1...gihi is the minimal
separator. If g1 = 1 but h′

1 ̸= 1 and there exists an i ∈ {1, ...,m′ − 1} such that
for all j ∈ {1, ..., i} we have hjgj+1 = h′

jg
′
j and hi = h′

i, then g1h1...higi+1 is the
minimal separator. If g1 ̸= 1 but h′

1 = 1 and for all i ∈ {1, ...,m′ − 1} we have
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gihi = g′ih
′
i+1 and gm′ = g′m′ , then g1h1...gm′hm′ is the minimal separator. If g1 ̸= 1

but h′
1 = 1 and for all i ∈ {1, ...,m′ − 1} we have gihi = g′ih

′
i+1 and gm′ ̸= g′m′ ,

then g1h1...hm′−1gm′ is the minimal separator. If g1 ̸= 1 but h′
1 = 1 and there

exist i ∈ {1, ...,m′ − 2} such that for all j ∈ {1, ..., i} we have gjhj = g′jh
′
j+1 and

gi+1 ̸= g′i+1, then g1h1...higi+1 is the minimal separator. If g1 ̸= 1 but h′
1 = 1 and

there exist i ∈ {1, ...,m′ − 2} such that for all j ∈ {1, ..., i} we have gjhj = g′jh
′
j+1

and gi+1 = g′i+1, then g1h1...gi+1hi+1 is the minimal separator.

• One of the kn, k
′
n is of type (ii) and the other is of type (iii). Without loss of

generality assume that kn is of type (ii). Let kn = g1h1...gmhmĝn and h′
1g

′
1...h

′
m′g′m′h̃n

for all n ∈ N. Without loss of generality assume that m ⩾ m′. If g1 ̸= 1 and h′
1 ̸= 1,

then g1 is the minimal separator. If g1 = 1 and h′
1 = 1, then g1h1 is the minimal

separator. If g1 = 1 but h′
1 ̸= 1 and for all i ∈ {1, ...,m′} we have higi+1 = h′

ig
′
i,

then g1h1...hm′gm′+1 is the minimal separator. If g1 = 1 but h′
1 ̸= 1 and there exists

an i ∈ {1, ...,m′ − 1} such that for all j ∈ {1, ..., i} we have hjgj+1 = h′
jg

′
j and

hi ̸= h′
i, then g1h1...gihi is the minimal separator. If g1 = 1 but h′

1 ̸= 1 and there
exists an i ∈ {1, ...,m′ − 1} such that for all j ∈ {1, ..., i} we have hjgj+1 = h′

jg
′
j

and hi = h′
i, then g1h1...higi+1 is the minimal separator. If g1 ̸= 1 but h′

1 = 1 and
for all i ∈ {1, ...,m′ − 1} we have gihi = g′ih

′
i+1 and gm′ = g′m′ , then g1h1...gm′hm′ is

the minimal separator. If g1 ̸= 1 but h′
1 = 1 and for all i ∈ {1, ...,m′ − 1} we have

gihi = g′ih
′
i+1 and gm′ ̸= g′m′ , then g1h1...hm′−1gm′ is the minimal separator. If g1 ̸= 1

but h′
1 = 1 and there exists an i ∈ {1, ...,m′ − 2} such that for all j ∈ {1, ..., i}

we have gjhj = g′jh
′
j+1 and gi+1 ̸= g′i+1, then g1h1...higi+1 is the minimal separator.

If g1 ̸= 1 but h′
1 = 1 and there exists an i ∈ {1, ...,m′ − 2} such that for all

j ∈ {1, ..., i} we have gjhj = g′jh
′
j+1 and gi+1 = g′i+1, then g1h1...gi+1hi+1 is the

minimal separator.

Lemma 6.5
Let Γ = G ∗H be a free product of non-trivial groups and let Γ ↷ X for a CAT(0) space
X. Moreover let g1 ∈ G, g2, g3, ... ∈ G\{1} and h1, h2, h3, ... ∈ H \{1}. Then there exists
a geodesic ray γ ∈ ∂x0X such that γ = limn→∞ γ[x0,g1h1g2h2...gnhn·x0] does exist.

Proof. Let AG and AH be finite sets of generators of G and H respectively, and let
A = AG ⊔ AH . From Švarc-Milnor lemma we know that there exists an (L,A)-quasi-
isometry f : Γ → X between (Γ, dA) and X. Let ε, δ be any positive constants and let
M > max

{
1
2ε
, 3LA+ δ

}
. From fact 2.30 we know that

dA(1, g1h1g2h2...gMhM) ⩾ 2M > 6LA+ δ and 1/dA(1, g1h1g2h2...gMhM) <
1

2M
< ε.

Moreover for all n ⩾ 2M we have

dA(g1h1...gMhM , g1h1...gnhn) = dA(1, gM+1hM+1...gnhn) ⩾ 2n− 2M ⩾ 2M > 6LA+ 2δ.

Therefore from Lemma 5.1 the limit limn→∞ γ[x0,g1h1g2h2...gnhn·x0] does exist.

Lemma 6.6
Let Γ = G∗H be a free product of groups and let Γ ↷ X for a proper CAT(0) space (X, d).
Moreover let x0 ∈ X be any point and let kn, k

′
n be separated generating sequences such
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that the limits limn→∞ γ[x0,kn·x0] = γ, limn→∞ γ[x0,k′n·x0] = γ′ for geodesic rays γ, γ′ ∈ ∂x0X
respectively. Then we have γ ̸= γ′.

Proof. From Lemma 6.4 we know that there exists a separator between kn and k′
n,

so let g ∈ Γ be any such separator between kn and k′
n. Since limn→∞ γ[x0,kn·x0] and

limn→∞ γ[x0,k′n·x0] do exist, limn→∞ d(x0, kn ·x0) = limn→∞ d(x0, k
′
n ·x0) = ∞. From Švarc-

Milnor lemma we know that for a finite set of generators A of Γ, the spaces (X, d) and
(Γ, dA) are (L,A)-quasi-isometric, and thus limn→∞ dA(1, kn) = limn→∞ dA(1, k

′
n) = ∞.

Therefore limn→∞ dA(g, kn) = limn→∞ dA(g, k
′
n) = ∞. Let R > 3LA and let N ∈ N be

such that for all natural numbers n > N we have dA(g, kn) ⩾ 2R and dA(g, k
′
n) ⩾ 2R.

Therefore from Lemma 4.6 the ball I = B(g,R) R-separaes kn from k′
n′ for all n, n′ > N .

From Lemma 5.4 we conclude that γ ̸= γ′.

Lemma 6.7
Let Γ = G ∗H be a free product of nontrivial groups and let Γ ↷ X for a proper CAT(0)
space (X, d). Moreover let γ be a geodesic ray beginning at x0. Then γ = limn→∞ γ[x0,kn·x0]

for some generating sequence kn.

Proof. Let γ ∈ ∂x0X be any geodesic ray. Moreover let AG, AH be any finite sets
generating G,H respectively. From Švarc-Milnor lemma we know that f : x0 7→ g · x0 is
an (L,A)-quasi-isometry between (Γ, dA) and (X, d) and thus Γ·x0 is A-quasi-dense in X.
We define the set C ⊆ Γ as

C = {g ∈ Γ : ∃t ⩾ 0 d(g · x0, γ(t) ⩽ A)} .

Since for every t ⩾ 0 there exists a g ∈ Γ such that d(γ(t), g ·x0) and for any t, t′ such that
t+2A > t′ there cannot be any point x ∈ X such that d(γ(t), x) ⩽ A and d(γ(t′), x) ⩽ A
then set C is infinite.

Let g ∈ Γ be such an element that infinitely many elements in C are prolongations of g.
We will show that there exists at most one element g′ which is such a prolongation of g
that g−1g′ ∈ G ∪ H and infinitely many elements in C are prolongations of g′. Assume
on the contrary that there are two such elements g′, g′′. Then g′′ is not a prolongation of
g′ and g′ is not a prolongation of g′′. We will now define

C ′ = {g ∈ C : g is a prolongation of g′}

C ′′ = {g ∈ C : g is a prolongation of g′′} .

Since sets C ′ and C ′′ are unbounded, we conclude from Lemma 3.2 that there are se-
quences c′n ∈ C ′ and c′′n ∈ C ′′ such that limn→∞ γ[x0,c′n·x0] = γ′ and limn→∞ γ[x0,c′′n·x0] = γ′′

for some geodesic rays γ′ and γ′′. Moreover for any δ > 0 and sufficiently large n′, n′′

we have dA(g
′, c′n′) ⩾ 6LA + 2δ and dA(g

′, c′′n′′) ⩾ 6LA + 2δ, thus from Lemma 4.6 the
set I = B(g′, 3LA + δ) (3LA + δ)-separates c′n′ from c′′n′′ . Therefore from Lemma 5.4
γ′ ̸= γ′′. On the other hand however, we know from Lemma 5.5 that limn→∞ γ[x0,c′n·x0] =
limn→∞ γ[x0,c′′n·x0] = γ. The contradiction ends this parts of the proof.

Now we need to consider two cases:

• There are infinite sequences of elements g1 ∈ G, h1, h2, ... ∈ H\{1}, g2, g3, ... ∈ G \ {1}
such that for every element kn = g1h1...gnhn, infinitely many elements from C are
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prolongations of kn. Let ε > 0 be any positive number, let m ⩾ 6LA + 2ε be a
natural number and let cn be any sequence consisting of all points in C. From
Lemma 5.5 we know that limn→∞ γx0,cn·x0 = γ. Moreover, for any m ∈ N there
are ε > 0, N ∈ N such that for any natural number n > N the element cn is a
prolongation of km and dA(cn, km) ⩾ 6LA + 2ε. Therefore from Lemma 4.6 the
ball Im = B(km, 3LA + ε) (3LA + ε)-separates 1 from cn, and thus from Lemma
5.2 there exists an sm ⩾ 0 such that γ(sm) ∈ NA(f(Im)). From the definition of
(L,A)-quasi-isometry we get the following estimate

d(γ(sm), km · x0) ⩽ diam(NA(f(Im))) ⩽ 2A+ diam(f(Im)) ⩽ 6L2A+ 2Lε+ 3A.

Therefore from Lemma 5.5 we know that

lim
n→∞

γ[x0,kn·x0] = γ.

• There is an element k0 ∈ Γ such that infinitely many elements of C are prolongations
of k0, but there are no prolongations k′

0 of k0 such that in C there are infinitely
many elements that are prolongations of k′

0. Without loss of generality we can
assume that k0 is of the form g1h1...gmhm for g1 ∈ G, h1, h2, ..., hm ∈ H \ {1} and
g2, ..., gm ∈ G \ {1} . Let cn be a sequence consisting of all prolongations of k0 that
are in C and let ĝn be such that cn is either equal to, or is a prolongation of k0ĝn.
Suppose that there exists an ε > 0 such that there are infinitely many cn such that
dA(cn, k0ĝn) ⩽ 6LA+ 2ε. Let tn be such that d(cn · x0, γ(tn)) ⩽ A, then we have

d(γ(tn), k0ĝn · x0) ⩽ d(γ(tn), cn · x0) + d(cn · x0, k0ĝn · x0) ⩽ 6L2A+ 2Lε+ 2A.

Since this estimate does not depend on the choice of n then from Lemma 5.5 we
have

lim
n→∞

γ[x0,k0ĝn·x0] = γ.

Now suppose that there are only finitely many cn such that dA(cn, k0ĝn) ⩽ 6LA+2ε.
From Lemma 5.5 we know that limn→∞ γ[x0,cn·x0] = γ, thus for a given s > 0 and

1
[6L2A+2Lε+3A]L

> ϵ > 0 let N ∈ N be such that for all natural n > N we have
d(γ(s), γ[x0,cn·x0](s)) ⩽ ϵ,

|k0ĝn|A ⩾
[6L2A+ 2Lε+ 3A]Ls

ϵ
+ 4LA+ 6L3A+ 2L2ε

and dA(cn, k0ĝn) > 6LA+2ε. Then from Lemma 4.6 the ball I = B(k0ĝn, 3LA+ ε)
(3LA + ε)-separates 1 from cn in (Γ, dA). From the R-separation lemma we know
that the set K = NA(f(I)) separates x0 from cn · x0, thus there is a t such that
γ[x0,cn·x0](t) ∈ K. Now we have the following estimates:

diam(K) ⩽ 6L2A+ 2Lε+ 3A

and

min {t, d(x0, k0ĝn)} ⩾
|k0ĝn|A

L
− A− diam(K) ⩾

|k0ĝn|A
L

− 4A− 6L2A− 2Lε

⩾
[6L2A+ 2Lε+ 3A]s

ϵ
.
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For simplicity we will denote t′ = min {t, d(x0, k0ĝn)}. From convexity of distance
function and triangle cutting lemma we have

d(γ(s), γ[x0,k0ĝn·x0](s)) ⩽ d(γ(s), γ[x0,cn·x0](s)) + d(γ[x0,cn·x0](s), γ[x0,k0ĝn·x0](s))

< ϵ+
s

t′
d(γ[x0,cn·x0](t

′), γ[x0,k0ĝn·x0](t
′)) ⩽ ϵ+

s

t′
d(γ[x0,cn·x0](t), k0ĝn · x0)

⩽ ε+
s

t′
diam(K) ⩽ 2ε.

Therefore limn→∞ γ[x0,k0ĝn·x0] = γ which ends the proof.

Lemma 6.8
Let Γ = G∗H be a free product of groups, let Γ ↷ X for a proper CAT(0) space (X, d) and
let x0 ∈ X. Moreover let kn, k′

n be such generating sequences that limn→∞ γ[x0,kn·x0] = γ
and limn→∞ γ[x0,k′n·x0] = γ′ for geodesic rays γ, γ′. Let k be a common prefix of kn, k

′
n.

Furthermore let A be any finite set of generators of Γ. There exists a constant R > 0
(depending only on Γ, X, x0 and A) such that for every ε > 0 there exists a constant
N ∈ N such that if |k|A ⩾ N then dR(γ, γ

′) < ε for an Osajda’s metric dR on ∂x0X.

Proof. From Švarc-Milnor lemma we know that f : g 7→ g ·x0 is an (L,A)-quasi-isometry
between (Γ, dA) and (X, d) for some L ⩾ 1, A ⩾ 0. Let δ > 0 be any number, let
R = 3A+ 2(3AL+ δ)L and for given ε > 0 let

N > max

{
L

ε
+ 5LA+ δ, 2(3AL+ δ)

}
be a natural number. Since |k|A ⩾ N > 2(3AL + δ) and |kn|A → ∞, |k′

n|A → ∞, then
there exists an M ∈ N such that for any natural number n > M from Lemma 4.6 the set
I = B(k, 3LA+ δ) (3LA+ δ)-separates 1 form kn and 1 from k′

n. Therefore from Lemma
5.3 we have the following estimate:

dR(γ, γ
′) ⩽

L

|k|A − 3LA− δ − 2LA
< ε,

which ends the proof.

Lemma 6.9
Let Γ = G ∗ H be a free product of infinite groups, let Γ ↷ X for a proper CAT(0)
space (X, d) and let x0 ∈ X. Moreover let γ ∈ ∂x0X be any geodesic ray and let A
be any finite set of generators of Γ. There exist a constant R > 0 such that for every
ε > 0 there exist generating sequences k

(i)
n , k

(ii)
n , k

(iii)
n of type (i), (ii), (iii) respectively

such that limn→∞ γ
[x0,k

(i)
n ·x0]

= γ(i), limn→∞ γ
[x0,k

(ii)
n ·x0]

= γ(ii), limn→∞ γ
[x0,k

(iii)
n ·x0]

= γ(iii)

for geodesic rays γ(i), γ(ii), γ(iii) and dR(γ, γ
(i)) < ε, dR(γ, γ

(ii)) < ε, dR(γ, γ
(iii)) < ε for

an Osajda’s metric dR on ∂x0X.

Proof. From Švarc-Milnor lemma we know that f : g 7→ g · x0 is an (L,A)-quasi-
isometry between (Γ, dA) and (X, d) for some L ⩾ 1, A ⩾ 0. Let δ > 0 and let
t > 1

ε
+ 6L2A+ 2Lδ + 4A be a sufficiently large positive constant. Since from the def-

inition of (L,A)-quasi-isometry the set Γ · x0 is quasi-dense in X, then let g ∈ Γ be
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such that d(k · x0, γ
′(t)) ⩽ A. Let g ∈ G \ {1}, h ∈ H \ {1} be fixed elements and let

ĝn ∈ G, ĥn ∈ H be any two sequences of elements of G,H such that ĝn ̸= ĝm and ĥn ̸= ĥm

for n ̸= m. Note that since sequences ĝn, ĥn consist of pairwise distinct elements then
limn→∞ |ĝn|A = limn→∞

∣∣∣ĥn

∣∣∣
A
= ∞. Let us consider two cases:

• k has normal form g1h1..gmhm, where hm ̸= 1. Then we define

k(i)
n =

{
g1h1...gnhn for n ⩽ m

g1h1...gmhm(gh)
n−m for n > m,

k
(ii)
n is such a subsequence of g1h1...gmhmĝn that there exists a geodesic ray γ(ii)

such that γ(ii) = limn→∞ γ
[x0,k

(ii)
n ·x0]

, k(iii)
n is such a subsequence of g1h1...gmhmgĥn

that there exists a geodesic ray γ(iii) such that γ(iii) = limn→∞ γ
[x0,k

(iii)
n ·x0]

;

• k has normal form g1h1..gmhm, where hm = 1. Then we define

k(i)
n =


g1h1...gnhn for n < m

g1h1...gmh for n = m

g1h1...gmh(gh)
n−m for n > m,

k
(ii)
n is such a subsequence of g1h1...gmhĝn that there exists a geodesic ray γ(ii) such

that γ(ii) = limn→∞ γ
[x0,k

(ii)
n ·x0]

, k(iii)
n is such a subsequence of g1h1...gmĥn that there

exists a geodesic ray γ(iii) such that γ(iii) = limn→∞ γ
[x0,k

(iii)
n ·x0]

.

In both cases all of the sequences k
(i)
n , k

(ii)
n , k

(iii)
n consist only of prolongations of k for

n > m. Therefore from Lemma 4.6 we know that there exist N ∈ N such that for natural
n > N the ball I = (k, 3LA+δ) (3LA+δ)-separates 1 form k

(i)
n , k

(ii)
n and k

(iii)
n . Therefore

from Lemma 5.6 we know that for R = 6L2A+2Lδ+4A we have the following inequalities
in Osajda’s metric dR:

dR(γ, γ
(i)) < ε, dR(γ, γ

(ii)) < ε, dR(γ, γ
(iii)) < ε.

Lemma 6.10
Let Γ = G ∗H be a free product of groups, let Γ ↷ X for a proper CAT(0) space (X, d)
and let x0 ∈ X. Moreover let A be any finite set of generators of Γ and let kn, k′

n be such
generating sequences that limn→∞ γ[x0,kn·x0] = γ and limn→∞ γ[x0,k′n·x0] = γ′ for geodesic
rays γ, γ′. Let k be a separator of kn, k′

n. There exist constants a ⩾ 1, b ⩾ 1 depending
only on Γ,A, X and x0, such that d2(γ, γ′) > 1

a|k|A+b
, where d2 is an Osajda’s metric on

∂x0X.

Proof. Let f : g 7→ g · x0 be an (L,A)-quasi-isometry between (Γ, dA) and (X, d) and
let a = L, b = L(3LA + δ) + 2A + 1. From the definition of a separator and Lemma
4.6 we know that there exists a natural number N such that the set I = B(k, 3LA + δ)
(3LA+ δ)-separates kn from kn′ for n, n′ > N . Therefore from Lemma 5.4 we know that
d2(γ, γ

′) ⩾ 1
a|k|A+b

, where d2 is an Osajda’s metric on ∂x0X.
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7 Proof of the main theorem

Theorem 7.1
Let Γ = G ∗H be a free product of infinite groups such that Γ ↷ X for a proper CAT(0)
space (X, d). Then ∂X can be expressed in terms of ΛG and ΛH in the following way:

∂X ∼= ⊔̃(ΛG,ΛH).

Proof. The proof will naturally split into five parts, each corresponding to the respective
axiom of the dense amalgam as in definition 2.34. Let YG = {Λ(kG) : k ∈ Γ}, YH =
{Λ(kH) : k ∈ Γ} and let Y = YG ⊔ YH be distinguished families of subspaces of ∂X.
Moreover let AG, AH be finite sets of generators of G, H respectively and let A =
AG ⊔ AH .

(i) From Lemma 3.8 we know that for each Λ(kG),Λ(k′G) ∈ YG and Λk̂H,Λk̂′H ∈ YH

we have Λ(kG) ∼= Λ(k′G) and Λ(k̂H) ∼= Λ(k̂′H). Let Y1, Y2 ∈ Y be two different
copies of ΛG or ΛH. Then we need to consider two subcases:

a) One of the copies Y1, Y2 is a copy of ΛG and the other is a copy of ΛH. Without
loss of generality let Y1 = ΛkG and Y2 = Λ(k′H). Assume on the contrary that
there exists a ξ ∈ Λ(kG) such that ξ ∈ Λ(k′H). Then there is γ ∈ Λx0(kG ·x0) such
that γ ∈ Λx0(k

′H · x0). From the definition of limit set we obtain

γ = lim
n→∞

γ[x0,kgn·x0] = lim
n→∞

γ[x0,k′hn·x0]

but cn = kgn and c′n = k′hn are separated generating sequences. Therefore from
Lemma 6.6 we obtain limn→∞ γ[x0,kgn·x0] ̸= limn→∞ γ[x0,k′hn·x0], a contradiction.

b) Both Y1 and Y2 are copies of ΛG or of ΛH. Without loss of generality assume
that Y1 = Λ(kG) and Y2 = Λ(k′G) where k ̸= k′g for every g ∈ G. Assume on
the contrary that there exists a ξ ∈ Λ(kG) such that ξ ∈ Λ(k′G). Then there is a
γ ∈ Λx0(kG · x0) such that γ ∈ Λx0(k

′G · x0). From the definition of limit set we
obtain γ = limn→∞ γ[x0,kgn·x0] = limn→∞ γ[x0,k′g′n·x0], but cn = kgn and c′n = k′gn are
separated generating sequences. Therefore from Lemma 6.6 we obtain

lim
n→∞

γ[x0,kgn·x0] ̸= lim
n→∞

γ[x0,k′gn·x0].

(ii) We know from Lemma 2.32 that it is enough to show that the family Y is null with
respect to any preferred metric d compatible with the topology on ∂X. We will
show that both families YG and YH are null. Without loss of generality we need
only to show that for the former. Let x0 ∈ X and let R be a constant from Lemma
6.8 for the boundary ∂x0X. Suppose on the contrary that there exist an infinite se-
quence of cosets g

(n)
1 h

(n)
1 ...g

(n)

m(n)h
(n)

m(n)G such that diamR(Λx0(g
(n)
1 h

(n)
1 ...g

(n)

m(n)h
(n)

m(n)G ·
x0)) > ε where diamR is a diameter in Osajda’s metric dR. Moreover, for the
ε given above, let N be the constant from Lemma 6.8. Since the set of genera-
tors A is finite, there are only finitely many words g

(n)
1 h

(n)
1 ...g

(n)

m(n)h
(n)

m(n) such that∣∣∣g(n)1 h
(n)
1 ...g

(n)

m(n)h
(n)

m(n)

∣∣∣
A
< N . Let n0 ∈ N be such that

∣∣∣g(n0)
1 h

(n0)
1 ...g

(n0)

m(n0)
h
(n0)

m(n0)

∣∣∣
A
⩾

N . For the sake of simplifying notation we will denote k = g
(n0)
1 h

(n0)
1 ...g

(n0)

m(n0)
h
(n0)

m(n0)
.

Then let γ, γ′ ∈ Λx0(kG·x0) be any geodesic rays and let γ = limn→∞ γ[x0,kgn·x0], γ
′ =
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limn→∞ γ[x0,kg′n·x0], where gn, g
′
n ∈ G. Note that kgn, kg

′
n are generating sequences

and k is their common prefix. From Lemma 6.8 we get dR(γ, γ
′) < ε, thus

diam(Λx0(kG · x0)) ⩽ ε.

The contradiction proves that the family YG is null.

(iii) Let Y ∈ Y be any of the embedded copies of ΛG or ΛH, without loss of generality
we will assume that Y = Λ(g1h1...gmhmG). Moreover let R be the constant from
Lemma 5.9, let γ′ ∈ Λx0(g1h1...gmhmG · x0) and let ε > 0 be any positive number.
Then from Lemma 6.9 we know that there exists a generating sequence kn of type (i)
such that γ = limn→∞ γ[x0,kn·x0] and dR(γ, γ

′) < ε for an Osajda’s metric dR on ∂x0X.
The generating sequence kn is separated from any generating sequence of type (ii),
thus it is separated from all generating sequences k′

n = g1h1...gmhmĝn, where ĝn ∈ G.
Therefore from Lemma 6.6 γ ̸= γ′′ for any γ′′ given as limn→∞ γ[x0,g1h1...gmhmĝn·x0], so
γ ̸∈ Λx0(g1h1...gmhmG · x0). From the arbitrariness of the choice of ε we conclude
that Y is a boundary subset.

(iv) Without loss of generality we will show that
⋃
YG is dense. Let R > 0 be the

constant from Lemma 6.9 and let γ ∈ ∂x0X be any geodesic ray. Then it fol-
lows from Lemma 6.9 that for any ε > 0 there exists a geodesic ray γ(ii) such
that dR(γ, γ

(ii)) < ε in Osajda’s metric dR on ∂x0X and γ(ii) = limn→∞ γ[x0,kn·x0],
where kn = g1h1...gmhmĝn is a generating sequence of type (ii). Therefore γ(ii) ∈
Λx0(g1h1...gmhmG · x0) ⊆

⋃
YG, and thus

⋃
YG is dense in ∂X.

(v) Let γ, γ′ ∈ ∂x0X be any two geodesic rays such that γ, γ′ do not belong to the same
subset in Y and let γ = limn→∞ γ[x0,kn·x0], γ

′ = limn→∞ γ[x0,k′n·x0] for generating
sequences kn, k

′
n which we can always assume dueto Lemma 6.7. Then kn, k

′
n are

separated. Let k be any separator between kn and k′
n. For simplicity of notation

let K be the set of such generating sequences k′′
n that there exists an N ∈ N such

that for any natural n > N , the element k′′
n is a prolongation of k. We will show

that the set
Q =

{
γ′′ ∈ ∂x0X : γ′′ = lim

n→∞
γ[x0,k′′n·x0], k′′

n ∈ K
}

is clopen and Y-saturated. Let γ1 ∈ Q and γ2 ∈ ∂x0X\Q. From Lemma 6.7 we know
that γ1 = limn→∞ γ

[x0,k
(1)
n ·x0]

and γ2 = limn→∞ γ
[x0,k

(2)
n ·x0]

, and from the definition of

Q we know that the sequence k
(1)
n for some point is a sequence of prolongations of k

and no element of k(2)
n is a prolongation of k. Therefore from Lemma 6.10 we know

that there exist a ⩾ 1, b ⩾ 1 such that d2
(
γ(1), γ(2)

)
> 1

a|k|A+b
. Thus

⋃
γ(1)∈H

B

(
γ(1),

1

a |k|A
+ b

)
= Q

⋃
γ(2)∈∂x0\Q

B

(
γ(2),

1

a |k|A + b

)
= ∂x0X \Q,

where B denotes a ball in Osajda’s metric d2. Therefore the set Q is clopen.
Now let Y ∈ Y be any of the embedded copies of ΛG or ΛH. Then we know
that Y is of form Λ(k̃G) or Λ(k̃H). Without loss of generality let us assume that
Y = Λ(k̃G) and k̃ has a normal form g1h1...gmhm. For every γ̂, γ̃ ∈ Λx0(k̃G · x0)
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we know that γ̂ = limn→∞ γ[x0,g1h1...gmhmĝn·x0] and γ̃ = limn→∞ γ[x0,g1h1...gmhmg̃n·x0],
where ĝn, g̃n ∈ G. From the definition of prolongation we conclude that either both
g1h1...gmhmĝn and g1h1...gmhmg̃n are consist of prolongations of k or neither is.
Therefore from the definition of Q either both γ̂, γ̃ ∈ Q or both γ̂, γ̃ ̸∈ Q thus either
Y ⊆ Q or Y ∩Q = ∅. Therefore Q is Y-saturated.

8 Open problems and concluding remarks

In this section we describe a few problems we encountered while working on the main
theorem.

Let Γ be a group and let Γ ↷ X for a CAT(0) space X. For some subgroups G of Γ it
appears that there is a non-empty, convex, closed, G-invariant subspace XG of X such
that G ↷ XG.

Example 8.1
For example if we take the group Γ = Z2 that acts on the CAT(0) space X = R2 by
translations (n,m) · (x, y) = (x+ n, y +m). If we take G = Z× {0} subgroup of Γ then
R× {0} is a subspace of X having the properties described above.

Open Problem 8.2
Let Γ = G ∗H be a group for some groups G,H and Γ ↷ X for a CAT(0) space X. Is
there a non-empty, convex, closed subspace XG of X such that G ↷ XG?

If the answer to the above question were to be affirmative, then it would be possible to
reformulate the main theorem in terms of subspaces of X and their boundaries, because if
such a subspace XG would exist, then ∂XG = ΛG. Personally I believe that if a subgroup
is a factor in a free product, then a non-empty, convex, closed subspace does always exist.

Open Problem 8.3 is a more general approach to the observation from beginning of this
section.

Open Problem 8.3
Let Γ be a group and X be a CAT(0) space such that Γ ↷ X. What conditionsdoes a
subgroup G of Γ need to meet for the existence of the subspace XG?

It was shown in [2] (Proposition II.2.8) that if the subgroup G of Γ is finite, then there
exists such a non-empty, convex, closed subspace of X. However, there are some groups
that have infinite subgroups G for which the subspace XG as described above cannot
exist. It is not hard to observe that a necessary condition for existance of XG is that the
subgroup is undistorted in Γ. The following example of an infinite distorted subgroup in
a CAT(0) group was presented in [7] (Theorem 1.6).

Example 8.4 (Distorted CAT(0) group)
Let Γ = ⟨a0, a1, a2; a0a1 = a1a0a

−1
2 a0a2 = a1⟩. Then Γ ↷ X for a CAT(0) space X and Γ

has a finitely generated free subgroup F2 such that the distortion of F2 is a polynomial
function of degree 2.

Generalizing the main theorem of this thesis should also be possible. Firstly, by using
the properties of dense amalgams described in [6], we can extend the definition of dense
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amalgam to the case where one or more of the Xi spaces are empty. This would allow us to
describe the case of a free product of non-trivial groups. However, applying these changes
requires some work to formally define all the cases and modify some of the lemmas.

Moreover, it should also be possible to generalize the main theorem to free products with
amalgamation over a finite subgroup and HNN-extensions over finite subgroups. In the
most general case, this can lead to a general theorem describing boundary at infinity for
group graphs in which the edge groups are finite. This approach also requires modifying
some lemmas, but in terms of the necessary ideas, it should not be significantly different
from the methods presented in this thesis.
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