Uniwersytet Wrocławski<br>Wydział Matematyki i Informatyki<br>Instytut Matematyczny<br>specjalność: matematyka teoretyczna

## Maciej Kucharski

Niezależne od wymiaru szacowania transformat Riesza związanych z oscylatorem harmonicznym

Praca magisterska napisana pod kierunkiem<br>dr. hab. inż. Błażeja Wróbla

# DIMENSION-FREE ESTIMATES FOR RIESZ TRANSFORMS RELATED TO THE HARMONIC OSCILLATOR 

MACIEJ KUCHARSKI


#### Abstract

We study $L^{p}$ bounds for two kinds of Riesz transforms on $\mathbb{R}^{d}$ related to the harmonic oscillator. We pursue an explicit estimate of their $L^{p}$ norms that is independent of the dimension $d$ and linear in $\max (p, p /(p-1))$.


## 1. Introduction

The aim of this paper is to prove a dimension-free estimate for the $L^{p}$ norm of vectors of a specific kind of generalized Riesz transforms. Recall that the classical Riesz transforms on $\mathbb{R}^{d}$ are the operators

$$
R_{i} f(x)=\partial_{x_{i}}(-\Delta)^{-1 / 2} f(x), \quad i=1, \ldots, d
$$

A well-known result concerning Riesz transforms, proved by Stein in [14], is the $L^{p}$ boundedness of the vector of the Riesz transforms

$$
\mathbf{R} f=\left(R_{1} f, \ldots, R_{d} f\right)
$$

with a norm estimate independent of $d$. Since then, the question about dimensionfree estimates for the Riesz transforms has been asked in various contexts. For example Carbonaro and Dragičević proved in [1] a dimension-free estimate with an explicit constant for the shifted Riesz transform on a complete Riemannian manifold. Another path of generalizing the result of Stein is to consider operators of the form

$$
\begin{equation*}
R_{i}=\delta_{i} L^{-1 / 2} \tag{1.1}
\end{equation*}
$$

where $\delta_{i}$ is an operator on $L^{2}\left(\mathbb{R}^{d}\right)$ and

$$
L=\sum_{i=1}^{d} L_{i}=\sum_{i=1}^{d}\left(\delta_{i}^{*} \delta_{i}+a_{i}\right), \quad a_{i} \geqslant 0
$$

Such Riesz transforms were studied systematically by Nowak and Stempak in [13]. We will focus on the Riesz transforms of the form as in (1.1) where $L$ is the harmonic

[^0]Key words and phrases. Riesz transform, Hermite expansions, Bellman function.
oscillator $\left(L=-\Delta+|x|^{2}\right)$, i.e.

$$
\begin{equation*}
\delta_{i}=\partial_{x_{i}}+x_{i}, \quad \delta_{i}^{*}=-\partial_{x_{i}}+x_{i}, \quad a_{i}=1 . \tag{1.2}
\end{equation*}
$$

From this point $\delta_{i}$ and $\delta_{i}^{*}$ are defined as above.
This so-called Hermite-Riesz transform was introduced by Thangavelu in [15], who proved its $L^{p}$ boundedness. Then a dimension-free estimate of its norm was proved in [7] and [8], which later was sharpened by Dragičević and Volberg in [5] to an estimate linear in $\max (p, p /(p-1))$.

In the first part we will give a result analogous to Theorem 10 from [16], however concerning a slightly altered operator, namely

$$
R_{i}^{\prime}=\delta_{i}^{*} L^{\prime-1 / 2}
$$

with

$$
L_{i}^{\prime}=\delta_{i} \delta_{i}^{*}+1, \quad L^{\prime}=\sum_{i=1}^{d} L_{i}^{\prime} .
$$

It arises as a result of swapping $\delta_{i}$ and $\delta_{i}^{*}$ in the definition of $R_{i}=\delta_{i} L^{-1 / 2}$. As explained in Section 3, the results from [16] do not apply to this operator. The key step in the proof is, as in [16], the method of Bellman function but we use its more subtle properties to achieve the goal.

In the second part we consider the vector of the Riesz transforms

$$
\tilde{\mathbf{R}} f=\left(\tilde{R}_{1} f, \ldots, \tilde{R}_{d} f\right)
$$

where

$$
\tilde{R}_{i}=\delta_{i}^{*} L^{-1 / 2}
$$

Its boundedness was proved in [5] (where $\tilde{R}_{i}$ was denoted by $R_{i}^{*}$ ), 7] and [8 with an implicit constant independent of the dimension. Our goal is to give an explicit constant. Due to reasons explained in Section 4 we will focus on proving the boundedness of the operator $S$ defined as

$$
S f(x)=|x| L^{-1 / 2} f(x)
$$

We obtain it by an explicit estimate of the kernel of $S$. As a corollary we get a dimension-free estimate of the norm of the vector of the operators

$$
R_{i}^{*}=\delta_{i}^{*}(L+2)^{-1 / 2}
$$

with each $R_{i}^{*}$ being the adjoint of $R_{i}=\delta_{i} L^{-1 / 2}$ studied in [5] and [16].

## 2. Preliminaries

In order to define the operators $L^{\prime}, L, R_{i}^{\prime}$ and $\tilde{R}_{i}$ on $L^{2}\left(\mathbb{R}^{d}\right)$ (later abbreviated as $L^{2}$ ) we introduce the Hermite polynomials and the Hermite functions. The Hermite polynomials are given by

$$
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{\mathrm{~d}^{n}}{\mathrm{~d} x^{n}} e^{-x^{2}}, x \in \mathbb{R}
$$

or, equivalently, by

$$
\begin{gathered}
H_{n}(x)=2 x H_{n-1}(x)-2(n-1) H_{n-2}(x), \quad n \geqslant 2, x \in \mathbb{R}, \\
H_{0}(x)=1, H_{1}(x)=2 x .
\end{gathered}
$$

The Hermite functions are

$$
h_{n}(x)=\frac{1}{\sqrt{2^{n} n!\sqrt{\pi}}} e^{-x^{2} / 2} H_{n}(x), x \in \mathbb{R}
$$

It is well known that the Hermite functions form an orthonormal basis of $L^{2}(\mathbb{R})$ and that their linear span is dense in $L^{p}(\mathbb{R})$ for every $1 \leqslant p<\infty$.

For $n=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{N}^{d}$ with $\mathbb{N}=\{0,1,2 \ldots\}$ and $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$ we define

$$
h_{n}(x)=h_{n_{1}}\left(x_{1}\right) \cdots h_{n_{d}}\left(x_{d}\right) .
$$

We can see that $\left\{h_{n}\right\}_{n \in \mathbb{N}^{d}}$ is an orthonormal basis of $L^{2}$. Throughout the paper we will use $\mathcal{D}=\operatorname{lin}\left\{h_{n}: n \in \mathbb{N}^{d}\right\}=\operatorname{lin}\left\{\delta_{i}^{*} h_{n}: n \in \mathbb{N}^{d}\right\}$.

Let $L^{\prime}$ be the operator given on $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ by

$$
L^{\prime}=\sum_{i=1}^{d} L_{i}^{\prime}, \quad L_{i}^{\prime}=\delta_{i} \delta_{i}^{*}+1, \quad \delta_{i}=\partial_{x_{i}}+x_{i} .
$$

In a similar way we define on $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$

$$
L=\sum_{i=1}^{d} L_{i}, \quad L_{i}=\delta_{i}^{*} \delta_{i}+1
$$

Since $\delta_{i} \delta_{i}^{*}=\delta_{i}^{*} \delta_{i}+2$, we can also write

$$
\begin{equation*}
L^{\prime}=L+2 d \tag{2.1}
\end{equation*}
$$

Note that the formal adjoint of $\delta_{i}$ with respect to the inner product on $L^{2}$ is $\delta_{i}^{*}=-\partial_{x_{i}}+x_{i}$. We recall well-known relations concerning the Hermite functions.
Lemma 1. For $n \in \mathbb{N}^{d}$ and $i=1, \ldots, d$ we have

1. $\delta_{i} h_{n}(x)= \begin{cases}\sqrt{2 n_{i}} h_{n-e_{i}}(x) & \text { if } n_{i} \neq 0 \\ 0 & \text { otherwise }\end{cases}$
2. $\delta_{i}^{*} h_{n}(x)=\sqrt{2\left(n_{i}+1\right)} h_{n+e_{i}}(x)$,
3. $L_{i}^{\prime} h_{n}(x)=\left(2 n_{i}+3\right) h_{n}(x)$,
4. $L_{i} h_{n}(x)=\left(2 n_{i}+1\right) h_{n}(x)$.

Hence, the multivariate Hermite functions $\left\{h_{n}\right\}_{n \in \mathbb{N}^{d}}$ are eigenvectors of $L^{\prime}$ and $L$ corresponding to positive eigenvalues $\left\{\lambda_{n}^{\prime}\right\}_{n \in \mathbb{N}^{d}}$ and $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}^{d}}$ respectively, where $\lambda_{n}^{\prime}=2|n|_{1}+3 d, \lambda_{n}=2|n|_{1}+d$ with $|n|_{1}=n_{1}+\cdots+n_{d}$ for $n=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{N}^{d}$. It is well known that $L$ (and $L^{\prime}$ ) are essentially self-adjoint on $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ with the self-adjoint extensions given by

$$
L^{\prime} f=\sum_{n \in \mathbb{N}^{d}} \lambda_{n}^{\prime}\left\langle f, h_{n}\right\rangle h_{n}, \quad L f=\sum_{n \in \mathbb{N}^{d}} \lambda_{n}\left\langle f, h_{n}\right\rangle h_{n},
$$

where $\langle\cdot, \cdot\rangle$ denotes the $L^{2}$ inner product, acting on the domains

$$
\begin{aligned}
& \operatorname{Dom}\left(L^{\prime}\right)=\left\{f \in L^{2}: \sum_{n \in \mathbb{N}^{d}} \lambda_{n}^{\prime 2}\left|\left\langle f, h_{n}\right\rangle\right|^{2}<\infty\right\} \\
& \operatorname{Dom}(L)=\left\{f \in L^{2}: \sum_{n \in \mathbb{N}^{d}} \lambda_{n}^{2}\left|\left\langle f, h_{n}\right\rangle\right|^{2}<\infty\right\} .
\end{aligned}
$$

Then $R_{i}^{\prime}=\delta_{i}^{*} L^{\prime-1 / 2}$ can be defined rigorously as

$$
R_{i}^{\prime} f=\sum_{n \in \mathbb{N}^{d}} \lambda_{n}^{\prime-1 / 2}\left\langle f, h_{n}\right\rangle \delta_{i}^{*} h_{n}
$$

and $\tilde{R}_{i}=\delta_{i}^{*} L^{-1 / 2}$ as

$$
\tilde{R}_{i} f=\sum_{n \in \mathbb{N}^{d}} \lambda_{n}^{-1 / 2}\left\langle f, h_{n}\right\rangle \delta_{i}^{*} h_{n}
$$

It is clear that $R_{i}^{\prime}$ and $\tilde{R}_{i}$ are bounded on $L^{2}$.
In what follows we will often identify a densely defined bounded operator on a Banach space with its unique bounded extension to the whole space. As for the notation, we will abbreviate

$$
L^{p}=L^{p}\left(\mathbb{R}^{d}\right), \quad\|\cdot\|_{p}=\|\cdot\|_{L^{p}} \quad \text { and } \quad\|\cdot\|_{p \rightarrow p}=\|\cdot\|_{L^{p} \rightarrow L^{p}}
$$

and for $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$ we will use $|x|=\left(\sum_{i=1}^{d} x_{i}^{2}\right)^{1 / 2}$. For $1<p<\infty$ we denote $p^{*}=\max \left(p, \frac{p}{p-1}\right)$.

## 3. Riesz transforms of the first kind

Let $\mathbf{R}^{\prime} f=\left(R_{1}^{\prime} f, \ldots, R_{d}^{\prime} f\right)$. The main result of this section gives an explicit estimate for the $L^{p}$ norm of $\mathbf{R}^{\prime}$.

Theorem 2. For $f \in L^{p}$ we have

$$
\left\|\mathbf{R}^{\prime} f\right\|_{p}:=\left(\int_{\mathbb{R}^{d}}\left|\mathbf{R}^{\prime} f(x)\right|^{p} d x\right)^{1 / p} \leqslant 48\left(p^{*}-1\right)\|f\|_{p}
$$

In order to prove Theorem 2, we will need some auxiliary objects. One can see that $L_{i}^{\prime}=-\partial_{x_{i}}^{2}+x_{i}^{2}+2$, so we can write

$$
-\Delta=-\sum_{i=1}^{d} \partial_{x_{i}}^{2}=L^{\prime}-r, \quad \text { where } r(x)=|x|^{2}+2 d
$$

We will also need the operators $M_{i}$ defined on $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ as

$$
M_{i}=\sum_{j \neq i} \delta_{j} \delta_{j}^{*}+\delta_{i}^{*} \delta_{i}=L^{\prime}+\left[\delta_{i}^{*}, \delta_{i}\right]=L^{\prime}-2
$$

where

$$
\left[\delta_{i}^{*}, \delta_{i}\right]=\delta_{i}^{*} \delta_{i}-\delta_{i} \delta_{i}^{*}
$$

Note that in our case $\left[\delta_{i}^{*}, \delta_{i}\right]=-2<0$. This means that the crucial assumption from [16] does not hold and the theory does not apply.

Non-zero elements of $\left\{c_{n}^{i} \delta_{i}^{*} h_{n}\right\}_{n \in \mathbb{N}^{d}}$ (where $c_{n}^{i}$ are the normalizing constants) form an orthonormal system of eigenvectors of $M_{i}$ with eigenvalues $\left\{\lambda_{n}^{\prime}\right\}_{n \in \mathbb{N}^{d}}$. Thus, we can define the self-adjoint extensions of $M_{i}$ by

$$
M_{i} f=\sum_{n \in \mathbb{N}^{d}} \lambda_{n}^{\prime}\left\langle f, c_{n}^{i} \delta_{i}^{*} h_{n}\right\rangle c_{n}^{i} \delta_{i}^{*} h_{n}
$$

on the domain

$$
\operatorname{Dom}\left(M_{i}\right)=\left\{f \in L^{2}: \sum_{n \in \mathbb{N}^{d}} \lambda_{n}^{\prime 2}\left|\left\langle f, c_{n}^{i} \delta_{i}^{*} h_{n}\right\rangle\right|^{2}<\infty\right\}
$$

Having these operators, we can introduce the semigroups

$$
P_{t}=e^{-t L^{1 / 2}} \quad \text { and } \quad Q_{t}^{i}=e^{-t M_{i}^{1 / 2}}
$$

rigorously defined as

$$
P_{t} f=\sum_{n \in \mathbb{N}^{d}} e^{-t \lambda_{n}^{1 / 2}}\left\langle f, h_{n}\right\rangle h_{n}, \quad Q_{t}^{i} f=\sum_{n \in \mathbb{N}^{d}} e^{-t \lambda_{n}^{1 / 2}}\left\langle f, c_{n}^{i} \delta_{i}^{*} h_{n}\right\rangle c_{n}^{i} \delta_{i}^{*} h_{n} .
$$

Lemma 3. Let $i=1, \ldots, d$. If $f, g \in \mathcal{D}$, then

$$
\left\langle R_{i}^{\prime} f, g\right\rangle=-4 \int_{0}^{\infty}\left\langle\delta_{i}^{*} P_{t} f, \partial_{t} Q_{t}^{i} g\right\rangle t d t
$$

Proof. The proof is analogous to the proof of Proposition 3 in [16] but we give it for the sake of completeness. By linearity it is sufficient to prove the lemma for $f=h_{n}$ and $g=\delta_{i}^{*} h_{k}$ for some $n, k \in \mathbb{N}^{d}$. We proceed as follows:

$$
\begin{aligned}
-4 \int_{0}^{\infty}\left\langle\delta_{i}^{*} P_{t} h_{n}, \partial_{t} Q_{t}^{i} \delta_{i}^{*} h_{k}\right\rangle t d t & =-4 \int_{0}^{\infty}\left\langle e^{-t \lambda_{n}^{\prime 1 / 2}} \delta_{i}^{*} h_{n},-\lambda_{k}^{\prime 1 / 2} e^{-t \lambda_{k}^{\prime 1 / 2}} \delta_{i}^{*} h_{k}\right\rangle t d t \\
& =4 \lambda_{k}^{\prime 1 / 2}\left\langle\delta_{i}^{*} h_{n}, \delta_{i}^{*} h_{k}\right\rangle \int_{0}^{\infty} e^{-t\left(\lambda_{n}^{\prime 1 / 2}+\lambda_{k}^{\prime 1 / 2}\right)} t d t \\
& =\frac{4 \lambda_{k}^{\prime 1 / 2}}{\left(\lambda_{n}^{\prime 1 / 2}+\lambda_{k}^{\prime 1 / 2}\right)^{2}}\left\langle\delta_{i}^{*} h_{n}, \delta_{i}^{*} h_{k}\right\rangle
\end{aligned}
$$

Hence, we get

$$
\begin{aligned}
& \left\langle\delta_{i}^{*} L^{\prime-1 / 2} h_{n}, \delta_{i}^{*} h_{k}\right\rangle+4 \int_{0}^{\infty}\left\langle\delta_{i}^{*} P_{t} h_{n}, \partial_{t} Q_{t}^{i} \delta_{i}^{*} h_{k}\right\rangle t d t \\
& =\lambda_{n}^{\prime-1 / 2}\left\langle\delta_{i}^{*} h_{n}, \delta_{i}^{*} h_{k}\right\rangle+\frac{4 \lambda_{k}^{\prime 1 / 2}}{\left(\lambda_{n}^{\prime 1 / 2}+\lambda_{k}^{\prime 1 / 2}\right)^{2}}\left\langle\delta_{i}^{*} h_{n}, \delta_{i}^{*} h_{k}\right\rangle \\
& =\left(\lambda_{n}^{\prime-1 / 2}-\frac{4 \lambda_{k}^{\prime 1 / 2}}{\left(\lambda_{n}^{\prime 1 / 2}+\lambda_{k}^{\prime 1 / 2}\right)^{2}}\right)\left\langle\delta_{i}^{*} h_{n}, \delta_{i}^{*} h_{k}\right\rangle .
\end{aligned}
$$

If $\lambda_{n}^{\prime}=\lambda_{k}^{\prime}$, then the expression in parentheses is 0 , otherwise $\delta_{i}^{*} h_{n}$ and $\delta_{i}^{*} h_{k}-$ eigenvectors of $M_{i}$ - are orthogonal.

We will also need a bilinear embedding theorem. First, for $f=\left(f_{1}, \ldots, f_{N}\right): \mathbb{R}^{d} \times$ $(0, \infty) \rightarrow \mathbb{R}^{N}$ we set

$$
\begin{aligned}
|f(x, t)|_{*}^{2} & =r(x)\left|\left(f_{1}(x, t), \ldots, f_{N}(x, t)\right)\right|^{2} \\
& +\left|\left(\partial_{t} f_{1}(x, t), \ldots, \partial_{t} f_{N}(x, t)\right)\right|^{2} \\
& +\sum_{i=1}^{d}\left|\left(\partial_{x_{i}} f_{1}(x, t), \ldots, \partial_{x_{i}} f_{N}(x, t)\right)\right|^{2} .
\end{aligned}
$$

We also define two auxiliary functions $F$ and $G$. For $f \in \mathcal{D}$ and $g=\left(g_{1}, \ldots, g_{d}\right)$ with $g_{i} \in \mathcal{D}$ let

$$
F(x, t)=P_{t} f(x) \quad \text { and } \quad G(x, t)=Q_{t} g(x)=\left(Q_{t}^{1} g_{1}(x), \ldots, Q_{t}^{d} g_{d}(x)\right)
$$

Theorem 4. Take $d \geqslant 2$. Then we have

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{d}}|F(x, t)|_{*}|G(x, t)|_{*} d x t d t \leqslant 6\left(p^{*}-1\right)\|f\|_{p}\|g\|_{q}
$$

3.1. The Bellman function. In order to prove Theorem 4 let us introduce the Bellman function. Take $p \geqslant 2$ and let $q$ be its conjugate exponent. Define $\beta$ : $[0, \infty)^{2} \rightarrow[0, \infty)$ by

$$
\beta(s, t)=s^{p}+t^{q}+\gamma\left\{\begin{array}{ll}
s^{2} t^{2-q} & \text { if } s^{p} \leqslant t^{q} \\
\frac{2}{p} s^{p}+\left(\frac{2}{q}-1\right) t^{q} & \text { if } s^{p} \geqslant t^{q}
\end{array}, \quad \gamma=\frac{q(q-1)}{8} .\right.
$$

The Nazarov-Treil Bellman function is then the function

$$
B(\zeta, \eta)=\frac{1}{2} \beta(|\zeta|,|\eta|), \quad \zeta \in \mathbb{R}^{m_{1}}, \eta \in \mathbb{R}^{m_{2}}
$$

It was introduced by Nazarov and Treil in 11 and then simplified and used by Carbonaro and Dragičević in [1, 2] and by Dragičević and Volberg in [3, 4, 5]. Note that $B$ is differentiable but not smooth, so we convolve it with a mollifier $\psi_{\kappa}$ to get $B_{\kappa}=B * \psi_{\kappa}$, where

$$
\psi_{\kappa}(x)=\frac{1}{\kappa^{m_{1}+m_{2}}} \psi\left(\frac{x}{\kappa}\right) \quad \text { and } \quad \psi(x)=c_{m_{1}, m_{2}} e^{-\frac{1}{1-|x|^{2}}} \chi_{B(0,1)}(x), \quad x \in \mathbb{R}^{m_{1}+m_{2}}
$$

and $c_{m_{1}, m_{2}}$ is the normalizing constant. The functions $B$ and $\psi_{\kappa}$ are biradial and so is $B_{\kappa}$, hence there exists $\beta_{\kappa}:[0, \infty)^{2} \rightarrow[0, \infty)$ such that

$$
B_{\kappa}(\zeta, \eta)=\frac{1}{2} \beta_{\kappa}(|\zeta|,|\eta|) .
$$

We invoke some properties of $\beta_{\kappa}$ and $B_{\kappa}$ that were proved in [5] and 9].
Theorem 5. Let $\kappa \in(0,1)$ and $s, t>0$. Then we have

1. $0 \leqslant \beta_{\kappa}(s, t) \leqslant(1+\gamma)\left((s+\kappa)^{p}+(t+\kappa)^{q}\right)$,
2. $0 \leqslant \partial_{s} \beta_{\kappa}(s, t) \leqslant C_{p} \max \left((s+\kappa)^{p-1}, t+\kappa\right)$,

$$
0 \leqslant \partial_{t} \beta_{\kappa}(s, t) \leqslant C_{p}(t+\kappa)^{q-1}
$$

The function $B_{\kappa}$ is smooth and for every $z=(x, y) \in \mathbb{R}^{m_{1}+m_{2}}$ there exists $\tau_{\kappa}>0$ such that for $\omega=\left(\omega_{1}, \omega_{2}\right) \in \mathbb{R}^{m_{1}+m_{2}}$ we have
3. $\left\langle\operatorname{Hess}\left(B_{\kappa}\right)(z) \omega, \omega\right\rangle \geqslant \frac{\gamma}{2}\left(\tau_{\kappa}\left|\omega_{1}\right|^{2}+\tau_{\kappa}^{-1}\left|\omega_{2}\right|^{2}\right)$.

There is a continuous function $E_{\kappa}: \mathbb{R}^{m_{1}+m_{2}} \rightarrow \mathbb{R}$ such that
4. $\left\langle\nabla B_{\kappa}(z), z\right\rangle \geqslant \frac{\gamma}{2}\left(\tau_{\kappa}|x|^{2}+\tau_{\kappa}^{-1}|y|^{2}\right)-\kappa E_{\kappa}(z)+B_{\kappa}(z)$,
5. $\left|E_{\kappa}(z)\right| \leqslant C_{m_{1}, m_{2}, p}\left(|x|^{p-1}+|y|+|y|^{q-1}+\kappa^{q-1}\right)$.
3.2. Proof of Theorem 4. Having defined the Bellman function, we proceed to the proof. First we should emphasize that the presence of the term $B_{\kappa}(z)$ in 4 is the key ingredient for the Bellman method to work despite the fact that $\left[\delta_{i}^{*}, \delta_{i}\right]<0$. Because of that, the proof of Lemma 6 is more involved than in [16].

Let

$$
u(x, t)=\left(P_{t} f(x), Q_{t} g(x)\right)=\left(P_{t} f(x), Q_{t}^{1} g_{1}(x), \ldots, Q_{t}^{d} g_{d}(x)\right)
$$

for $x \in \mathbb{R}^{d}$ and $t>0$ and fix $p \geqslant 2$. We will use the Bellman function $B_{\kappa}$ and $b_{\kappa}=B_{\kappa} \circ u$ with $m_{1}=1$ and $m_{2}=d$. Our aim is to estimate the integral

$$
I(n, \varepsilon)=\int_{0}^{\infty} \int_{X_{n}}\left(\partial_{t}^{2}+\Delta\right)\left(b_{\kappa(n)}\right)(x, t) d x t e^{-\varepsilon t} d t
$$

where $\kappa(n)$ is a number depending on $n$ and $X_{n}=[-n, n]^{d}$ so that $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is an increasing family of compact sets such that $\mathbb{R}^{d}=\bigcup_{n} X_{n}$.

Lemma 6. We have

$$
\liminf _{\varepsilon \rightarrow 0^{+}} \liminf _{n \rightarrow \infty} I(n, \varepsilon) \geqslant \gamma \int_{0}^{\infty} \int_{\mathbb{R}^{d}}|F(x, t)|_{*}|G(x, t)|_{*} d x t d t
$$

Proof. In order to make formulae more compact, we will sometimes write $\partial_{x_{0}}$ instead of $\partial_{t}$. The first step will be to prove that

$$
\begin{align*}
\left(\partial_{t}^{2}+\Delta\right)\left(b_{\kappa}\right)(x, t) & \geqslant \gamma|F(x, t)|_{*}|G(x, t)|_{*}-\kappa r(x) E_{\kappa}(u(x, t)) \\
& +r(x) B_{\kappa}(u(x, t))-2 \sum_{i=1}^{d} \partial_{\eta_{i}} B_{\kappa}(u(x, t)) Q_{t}^{i} g_{i}(x) \tag{3.1}
\end{align*}
$$

From the chain rule we get $\partial_{x_{i}} b_{\kappa}(x, t)=\left\langle\nabla B_{\kappa}(u(x, t)), \partial_{x_{i}} u(x, t)\right\rangle$ for $i=0, \ldots, d$. Then, again by the chain rule, we have

$$
\partial_{x_{i}}^{2} b_{\kappa}(x, t)=\left\langle\nabla B_{\kappa}(u(x, t)), \partial_{x_{i}}^{2} u(x, t)\right\rangle+\left\langle\operatorname{Hess}\left(B_{\kappa}\right)(u(x, t))\left(\partial_{x_{i}} u(x, t)\right), \partial_{x_{i}} u(x, t)\right\rangle .
$$

Summing for $i=0, \ldots, d$, we get

$$
\begin{aligned}
\left(\partial_{t}^{2}+\Delta\right)\left(b_{\kappa}\right)(x, t) & =\left\langle\nabla B_{\kappa}(u(x, t)),\left(\partial_{t}^{2}+\Delta\right)(u)(x, t)\right\rangle \\
& +\sum_{i=0}^{d}\left\langle\operatorname{Hess}\left(B_{\kappa}\right)(u(x, t))\left(\partial_{x_{i}} u(x, t)\right), \partial_{x_{i}} u(x, t)\right\rangle
\end{aligned}
$$

By the definition of $P_{t}$ and $Q_{t}$ we see that

$$
\left(\partial_{t}^{2}-L^{\prime}\right) P_{t} f=0
$$

and

$$
\left(\partial_{t}^{2}-L^{\prime}\right) Q_{t}^{i} g_{i}=\left(\partial_{t}^{2}-M_{i}\right) Q_{t}^{i} g_{i}-2 Q_{t}^{i} g_{i}=-2 Q_{t}^{i} g_{i}
$$

Therefore, using the fact that $-\Delta=L^{\prime}-r$ we get

$$
\begin{aligned}
\left(\partial_{t}^{2}+\Delta\right)\left(b_{\kappa}\right)(x, t) & =r(x)\left\langle\nabla B_{\kappa}(u(x, t)), u(x, t)\right\rangle \\
& -2 \sum_{i=1}^{d} \partial_{\eta_{i}} B_{\kappa}(u(x, t)) Q_{t}^{i} g_{i}(x) \\
& +\sum_{i=0}^{d}\left\langle\operatorname{Hess}\left(B_{\kappa}\right)(u(x, t))\left(\partial_{x_{i}} u(x, t)\right), \partial_{x_{i}} u(x, t)\right\rangle .
\end{aligned}
$$

Next, inequalities 3. and 4. from Theorem 5 and the inequality of arithmetic and geometric means imply that

$$
\begin{aligned}
\left(\partial_{t}^{2}+\Delta\right)\left(b_{\kappa}\right)(x, t) \geqslant & r(x) \frac{\gamma}{2}\left(\tau_{\kappa}\left|P_{t} f(x)\right|^{2}+\tau_{\kappa}{ }^{-1}\left|Q_{t} g(x)\right|^{2}\right) \\
& -r(x) \kappa E_{\kappa}(u(x, t))+r(x) B_{\kappa}(u(x, t)) \\
& -2 \sum_{i=1}^{d} \partial_{\eta_{i}} B_{\kappa}(u(x, t)) Q_{t}^{i} g_{i}(x) \\
& +\frac{\gamma}{2} \sum_{i=0}^{d}\left(\tau_{\kappa}\left|\partial_{x_{i}} P_{t} f(x)\right|^{2}+\tau_{\kappa}{ }^{-1}\left|\partial_{x_{i}} Q_{t} g(x)\right|^{2}\right) \\
= & \frac{\gamma \tau_{\kappa}\left|P_{t} f(x)\right|_{*}^{2}+\gamma \tau_{\kappa}{ }^{-1}\left|Q_{t} g(x)\right|_{*}^{2}}{2}-r(x) \kappa E_{\kappa}(u(x, t)) \\
& +r(x) B_{\kappa}(u(x, t))-2 \sum_{i=1}^{d} \partial_{\eta_{i}} B_{\kappa}(u(x, t)) Q_{t}^{i} g_{i}(x) \\
\geqslant & \gamma|F(x, t)|_{*}|G(x, t)|_{*}-\kappa r(x) E_{\kappa}(u(x, t)) \\
& +r(x) B_{\kappa}(u(x, t))-2 \sum_{i=1}^{d} \partial_{\eta_{i}} B_{\kappa}(u(x, t)) Q_{t}^{i} g_{i}(x) .
\end{aligned}
$$

In summary

$$
\begin{align*}
\left(\partial_{t}^{2}+\Delta\right)\left(b_{\kappa}\right)(x, t) \geqslant & \gamma|F(x, t)|_{*}|G(x, t)|_{*}-\kappa r(x) E_{\kappa}(u(x, t)) \\
& +r(x) B_{\kappa}(u(x, t))-2 \sum_{i=1}^{d} \partial_{\eta_{i}} B_{\kappa}(u(x, t)) Q_{t}^{i} g_{i}(x) \tag{3.2}
\end{align*}
$$

The next step is to show that

$$
\begin{equation*}
r(x) B(u(x, t))-2 \sum_{i=1}^{d} \partial_{\eta_{i}} B(u(x, t)) Q_{t}^{i} g_{i}(x) \geqslant 0 \tag{3.3}
\end{equation*}
$$

We have the following equalities:

$$
\begin{gathered}
\frac{\partial \beta}{\partial y}(x, y)=q y^{q-1}+\gamma\left\{\begin{array}{l}
(2-q) x^{2} y^{1-q} \\
(2-q) y^{q-1}
\end{array},\right. \\
\frac{\partial|\eta|}{\partial \eta_{i}}=\frac{\partial \sqrt{\eta_{1}^{2}+\cdots+\eta_{d}^{2}}}{\partial \eta_{i}}=\frac{\eta_{i}}{\sqrt{\eta_{1}^{2}+\cdots+\eta_{d}^{2}}}=\frac{\eta_{i}}{|\eta|}, \\
2 \frac{\partial}{\partial \eta_{i}} B(\zeta, \eta)=\frac{\partial}{\partial \eta_{i}} \beta(|\zeta|,|\eta|)=\frac{\partial \beta}{\partial y}(|\zeta|,|\eta|) \cdot \frac{\partial|\eta|}{\partial \eta_{i}} \\
=\left(q|\eta|^{q-1}+\gamma(2-q)\left\{\begin{array}{l}
|\zeta|^{2}|\eta|^{1-q} \\
|\eta|^{q-1}
\end{array}\right) \frac{\eta_{i}}{|\eta|} .\right.
\end{gathered}
$$

Using them, we may rewrite inequality (3.3) as

$$
\begin{gather*}
\left(|x|^{2}+2 d\right)\left(|\zeta|^{p}+|\eta|^{q}+\gamma\left\{\begin{array}{l}
|\zeta|^{2}|\eta|^{2-q} \\
\frac{2}{p}|\zeta|^{p}+\left(\frac{2}{q}-1\right)|\eta|^{q}
\end{array}\right)-\right.  \tag{3.4}\\
2\left(q|\eta|^{q}+\gamma(2-q)\left\{\begin{array}{l}
|\zeta|^{2}|\eta|^{2-q} \\
|\eta|^{q}
\end{array}\right) \geqslant 0\right.
\end{gather*}
$$

where $\zeta=P_{t} f(x)$ and $\eta=Q_{t} g(x)$. Then, we consider two cases.
Case 1: $|\zeta|^{p} \leqslant|\eta|^{q}$. We omit $|x|^{2}$ reducing (3.4) to

$$
d|\zeta|^{p}+(d-q)|\eta|^{q}+\gamma(d-2+q)|\zeta|^{2}|\eta|^{2-q} \geqslant 0 .
$$

Since $q \leqslant 2$, this is true as long as $d \geqslant 2$.
Case 2: $|\zeta|^{p} \geqslant|\eta|^{q}$. In this case inequality (3.4) becomes

$$
\left(|x|^{2}+2 d\right)\left(1+\frac{2 \gamma}{p}\right)|\zeta|^{p}+\left(\left(|x|^{2}+2 d\right)\left(1+\frac{2 \gamma}{q}-\gamma\right)-2 q-2 \gamma(2-q)\right)|\eta|^{q} \geqslant 0
$$

We omit the first term, $|x|^{2}$ and $|\eta|^{q}$ in the above. Then we are left with proving

$$
2 d\left(1+\frac{2 \gamma}{q}-\gamma\right)-2 q-4 \gamma+2 \gamma q \geqslant 0
$$

Plugging the definition of $\gamma$ into this inequality and rearranging it, we arrive at

$$
q^{3}+q^{2}(-d-3)+q(3 d-6)+6 d \geqslant 0
$$

which is true for $1<q \leqslant 2$ and $d \geqslant 2$.

Having proved (3.3), we come back to (3.2) and write

$$
\begin{align*}
\left(\partial_{t}^{2}+\Delta\right)\left(b_{\kappa}\right)(x, t) & \geqslant \gamma|F(x, t)|_{*}|G(x, t)|_{*}-\kappa r(x) E_{\kappa}(u(x, t)) \\
& +r(x) B_{\kappa}(u(x, t))-2 \sum_{i=1}^{d} \partial_{\eta_{i}} B_{\kappa}(u(x, t)) Q_{t}^{i} g_{i}(x)  \tag{3.5}\\
& -r(x) B(u(x, t))+2 \sum_{i=1}^{d} \partial_{\eta_{i}} B(u(x, t)) Q_{t}^{i} g_{i}(x)
\end{align*}
$$

The last step is to show that

$$
\kappa r(x) E_{\kappa}(u(x, t))
$$

and the difference between

$$
r(x) B(u(x, t))-2 \sum_{i=1}^{d} \partial_{\eta_{i}} B(u(x, t)) Q_{t}^{i} g_{i}(x)
$$

and

$$
r(x) B_{\kappa}(u(x, t))-2 \sum_{i=1}^{d} \partial_{\eta_{i}} B_{\kappa}(u(x, t)) Q_{t}^{i} g_{i}(x)
$$

are negligible.
First let us prove that $u(x, t)$ is bounded on $X_{n} \times[0,+\infty)$. Recall that

$$
u(x, t)=\left(P_{t} f(x), Q_{t} g(x)\right)=\left(P_{t} f(x), Q_{t}^{1} g_{1}(x), \ldots, Q_{t}^{d} g_{d}(x)\right)
$$

where

$$
P_{t} f=\sum_{n \in \mathbb{N}^{d}} e^{-t \lambda_{n}^{\prime 1 / 2}}\left\langle f, h_{n}\right\rangle h_{n}, \quad Q_{t}^{i} g_{i}=\sum_{n \in \mathbb{N}^{d}} e^{-t \lambda_{n}^{\prime 1 / 2}}\left\langle g_{i}, c_{n}^{i} \delta_{i}^{*} h_{n}\right\rangle c_{n}^{i} \delta_{i}^{*} h_{n}
$$

and $f, g_{i} \in \mathcal{D}$. Since $h_{k}$ are continuous, they are bounded on $X_{n}$, thus

$$
\left|P_{t} f(x)\right| \leqslant \sum_{k \in \mathbb{N}^{d}} e^{-t \lambda_{k}^{\prime 1 / 2}}\left|\left\langle f, h_{k}\right\rangle\right| M_{n, k}
$$

for some constants $M_{n, k}$. The above sum has only finitely many non-zero terms and it is a decreasing function of $t$, so $P_{t} f(x)$ is bounded uniformly for all $x \in X_{n}$ and $t \geqslant 0$. A similar argument shows that each $Q_{t}^{i} g_{i}$ is bounded.

Using inequality 5rom Theorem 5and the previous paragraph, we see that there exists a sequence $\{\kappa(n)\}_{n \in \mathbb{N}}$ such that

$$
\begin{equation*}
\int_{X_{n}}\left|\kappa(n) r(x) E_{\kappa(n)}(u(x, t))\right| d x \leqslant \frac{1}{n} . \tag{3.6}
\end{equation*}
$$

Now we turn to estimating $\left|B(u(x, t))-B_{\kappa}(u(x, t))\right|$. As we have shown, $u\left[X_{n} \times\right.$ $[0,+\infty)]$ is bounded, which means that $B$ is uniformly continuous on this set. Therefore, for each $n \in \mathbb{N}$ there exists $\kappa(n)$ satisfying (3.6) and such that for all $x \in X_{n}$ and $t \geqslant 0$

$$
\begin{align*}
\left|B(u(x, t))-B_{\kappa(n)}(u(x, t))\right| & \leqslant \int_{B(0, \kappa(n))}|B(u(x, t))-B(u(x, t)-y)| \psi_{\kappa(n)}(y) d y \\
& \leqslant \frac{1}{n}\left(\int_{X_{n}}|r(x)| d x\right)^{-1} \tag{3.7}
\end{align*}
$$

A similar reasoning shows that for each $n \in \mathbb{N}$ there exists $\kappa(n)$ satisfying (3.6) and (3.7) and such that for all $x \in X_{n}, t \geqslant 0$ and $i=1, \ldots, d$

$$
\begin{equation*}
\left|\partial_{\eta_{i}} B(u(x, t))-\partial_{\eta_{i}} B_{\kappa(n)}(u(x, t))\right| \leqslant \frac{1}{n}\left(\int_{X_{n}}\left|2 Q_{t}^{i} g_{i}(x)\right| d x\right)^{-1} \tag{3.8}
\end{equation*}
$$

Coming back to inequality (3.5), we get

$$
\begin{aligned}
\int_{X_{n}} & \left(\partial_{t}^{2}+\Delta\right)\left(b_{\kappa(n)}\right)(x, t) d x \\
& \geqslant \gamma \int_{X_{n}}|F(x, t)|_{*}|G(x, t)|_{*} d x-\int_{X_{n}} \kappa(n) r(x) E_{\kappa(n)}(u(x, t)) d x \\
& +\int_{X_{n}} r(x)\left(B_{\kappa(n)}(u(x, t))-B(u(x, t))\right) d x \\
& -2 \int_{X_{n}} \sum_{i=1}^{d} Q_{t}^{i} g_{i}(x)\left(\partial_{\eta_{i}} B_{\kappa(n)}(u(x, t))-\partial_{\eta_{i}} B(u(x, t))\right) d x
\end{aligned}
$$

Using conditions (3.6), (3.7) and (3.8) on $\kappa(n)$ we get

$$
\liminf _{n \rightarrow \infty} \int_{X_{n}}\left(\partial_{t}^{2}+\Delta\right)\left(b_{\kappa(n)}\right)(x, t) d x \geqslant \gamma \int_{\mathbb{R}^{d}}|F(x, t)|_{*}|G(x, t)|_{*} d x
$$

and by the monotone convergence theorem

$$
\liminf _{\varepsilon \rightarrow 0^{+}} \liminf _{n \rightarrow \infty} I(n, \varepsilon) \geqslant \gamma \int_{0}^{\infty} \int_{\mathbb{R}^{d}}|F(x, t)|_{*}|G(x, t)|_{*} d x t d t
$$

Lemma 7. For $f, g \in \mathcal{D}$ we have

$$
\limsup _{\varepsilon \rightarrow 0^{+}} \limsup _{n \rightarrow \infty} I(n, \varepsilon) \geqslant \frac{1+\gamma}{2}\left(\|f\|_{p}^{p}+\|g\|_{q}^{q}\right) .
$$

Proof. Denote

$$
\begin{aligned}
& I_{1}(n, \varepsilon)=\int_{0}^{\infty} \int_{X_{n}} \partial_{t}^{2}\left(b_{\kappa(n)}\right)(x, t) d x t e^{-\varepsilon t} d t \\
& I_{2}(n, \varepsilon)=\int_{0}^{\infty} \int_{X_{n}} \Delta\left(b_{\kappa(n)}\right)(x, t) d x t e^{-\varepsilon t} d t
\end{aligned}
$$

Then $I(n, \varepsilon)=I_{1}(n, \varepsilon)+I_{2}(n, \varepsilon)$. First we prove that $\lim _{n \rightarrow \infty} I_{2}(n, \varepsilon)=0$. Since

$$
I_{2}(n, \varepsilon)=\sum_{i=1}^{d} \int_{0}^{\infty} \int_{X_{n}} \partial_{x_{i}}^{2}\left(b_{\kappa(n)}\right)(x, t) d x t e^{-\varepsilon t} d t
$$

it is sufficient to prove that each summand tends to 0 . We will present the proof for the first term only, call it $I_{2}^{1}(n, \varepsilon)$. Let $x^{\prime}=\left(x_{2}, \ldots, x_{d}\right)$. Integrating by parts with respect to $x_{1}$, we get

$$
I_{2}^{1}(n, \varepsilon)=\int_{0}^{\infty} \int_{[-n, n]^{d-1}} \partial_{x_{1}}\left(b_{\kappa(n)}\right)\left(n, x^{\prime}, t\right)-\partial_{x_{1}}\left(b_{\kappa(n)}\right)\left(-n, x^{\prime}, t\right) d x^{\prime} t e^{-\varepsilon t} d t
$$

By the chain rule

$$
\begin{aligned}
\partial_{x_{1}}\left(b_{\kappa(n)}\right)\left( \pm n, x^{\prime}, t\right) & =\partial_{\zeta} B_{\kappa(n)}\left(u\left( \pm n, x^{\prime}, t\right)\right) \partial_{x_{1}} P_{t} f\left( \pm n, x^{\prime}\right) \\
& +\left\langle\nabla_{\eta} B_{\kappa(n)}\left(u\left( \pm n, x^{\prime}, t\right)\right), \partial_{x_{1}} Q_{t} g\left( \pm n, x^{\prime}\right)\right\rangle
\end{aligned}
$$

Recall that $f, g_{i} \in \mathcal{D}$ and hence $P_{t} f, Q_{t}^{i} g_{i} \in \mathcal{D}$. Using item 2 of Theorem 5 and the fact that the Hermite functions converge to 0 rapidly we conclude that $\lim _{n \rightarrow \infty} I_{2}(n, \varepsilon)=0$.

Now we turn to $I_{1}$. Using Fubini's theorem, we may interchange the order of integration to get

$$
I_{1}(n, \varepsilon)=\int_{X_{n}} \int_{0}^{\infty} \partial_{t}^{2}\left(b_{\kappa(n)}\right)(x, t) t e^{-\varepsilon t} d t d x
$$

Next, we use integration by parts on the inner integral twice, neglecting the boundary terms (this is allowed by the same argument as in the previous paragraph). This leads to

$$
\begin{aligned}
I_{1}(n, \varepsilon) & =-\int_{X_{n}} \int_{0}^{\infty} \partial_{t}\left(b_{\kappa(n)}\right)(x, t)(1-\varepsilon t) e^{-\varepsilon t} d t d x \\
& =\int_{X_{n}} b_{\kappa(n)}(x, 0) d x+\varepsilon^{2} \int_{X_{n}} \int_{0}^{\infty} b_{\kappa(n)}(x, t) t e^{-\varepsilon t} d t d x \\
& -2 \varepsilon \int_{X_{n}} \int_{0}^{\infty} b_{\kappa(n)}(x, t) e^{-\varepsilon t} d t d x \\
& \leqslant \int_{X_{n}} b_{\kappa(n)}(x, 0) d x+\varepsilon^{2} \int_{X_{n}} \int_{0}^{\infty} b_{\kappa(n)}(x, t) t e^{-\varepsilon t} d t d x .
\end{aligned}
$$

Denote the last two terms by $I_{1}^{1}(n)$ and $I_{1}^{2}(n, \varepsilon)$.
First we will show that $\lim \sup _{\varepsilon \rightarrow 0^{+}} \lim \sup _{n \rightarrow \infty} I_{1}^{2}(n, \varepsilon)=0$. Item 1 . of Theorem 5 implies that

$$
I_{1}^{2}(n, \varepsilon) \leqslant \varepsilon^{2} C_{p} \int_{X_{n}} \int_{0}^{\infty}\left(\left|P_{t} f(x)\right|^{p}+\left|Q_{t} g(x)\right|^{q}+\max \left(\kappa(n)^{p}, \kappa(n)^{q}\right)\right) t e^{-\varepsilon t} d t d x
$$

Taking $\kappa(n)$ satisfying (3.6), (3.7) and (3.8) and such that

$$
\begin{equation*}
(2 n)^{d} \max \left(\kappa(n)^{p}, \kappa(n)^{q}\right) \leqslant \frac{1}{n} \tag{3.9}
\end{equation*}
$$

we get

$$
\limsup _{n \rightarrow \infty} I_{1}^{2}(n, \varepsilon) \leqslant \varepsilon^{2} C_{p} \int_{X} \int_{0}^{\infty}\left(\left|P_{t} f(x)\right|^{p}+\left|Q_{t} g(x)\right|^{q}\right) t d t d x \leqslant C \varepsilon^{2}
$$

The last step is to estimate $I_{1}^{1}(n)$. Using item 1. of Theorem 5 again, we obtain

$$
I_{1}^{1}(n) \leqslant \frac{1+\gamma}{2} \int_{X_{n}}(|f(x)|+\kappa(n))^{p} d x+\frac{1+\gamma}{2} \int_{X_{n}}(|g(x)|+\kappa(n))^{q} d x .
$$

We take $\varepsilon>0$, denote $A=\left\{x \in \mathbb{R}^{d}: \varepsilon|f(x)| \geqslant|\kappa(n)|\right\}$ and split these two integrals as follows:

$$
\begin{aligned}
I_{1}^{1}(n) & \leqslant \frac{1+\gamma}{2} \int_{A}(|f(x)|+\kappa(n))^{p} d x+\int_{A^{\mathrm{C}}}(|f(x)|+\kappa(n))^{p} d x \\
& +\frac{1+\gamma}{2} \int_{A}(|g(x)|+\kappa(n))^{q} d x+\int_{A^{\mathrm{C}}}(|g(x)|+\kappa(n))^{q} d x \\
& \leqslant \frac{1+\gamma}{2}\left((1+\varepsilon)^{p}\|f\|_{p}^{p}+(1+\varepsilon)^{q}\|g\|_{q}^{q}\right) \\
& +\frac{1+\gamma}{2}(2 n)^{d}\left(\left(1+\varepsilon^{-1}\right)^{p} \kappa(n)^{p}+\left(1+\varepsilon^{-1}\right)^{q} \kappa(n)^{q}\right) .
\end{aligned}
$$

Since $\kappa(n)$ satisfies (3.9), we get

$$
\limsup _{\varepsilon \rightarrow 0^{+}} \limsup _{n \rightarrow \infty} I_{1}^{1}(n, \varepsilon) \leqslant \frac{1+\gamma}{2}\left(\|f\|_{p}^{p}+\|g\|_{q}^{q}\right)
$$

and hence, as we have shown that other terms are negligible, we obtain

$$
\limsup _{\varepsilon \rightarrow 0^{+}} \limsup _{n \rightarrow \infty} I(n, \varepsilon) \leqslant \frac{1+\gamma}{2}\left(\|f\|_{p}^{p}+\|g\|_{q}^{q}\right) .
$$

Now we are ready to prove the bilinear embedding theorem.

Proof of Theorem 4. Combining Lemma 6 and Lemma 7, we get

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{d}}|F(x, t)|_{*}|G(x, t)|_{*} d x t d t \leqslant \frac{1+\gamma}{2 \gamma}\left(\|f\|_{p}^{p}+\|g\|_{q}^{q}\right)
$$

Multiplying $f$ by $\left(\frac{q\|g\|_{q}^{q}}{p\|f\|_{p}^{p}}\right)^{\frac{1}{p+q}}$ and $g$ by the reciprocal of this number, we obtain

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{d}}|F(x, t)|_{*}|G(x, t)|_{*} d x t d t \leqslant \frac{1+\gamma}{2 \gamma}\left(\left(\frac{q}{p}\right)^{1 / q}+\left(\frac{p}{q}\right)^{1 / p}\right)\|f\|_{p}\|g\|_{q}
$$

We need to show that $\frac{1+\gamma}{2 \gamma}\left(\left(\frac{q}{p}\right)^{1 / q}+\left(\frac{p}{q}\right)^{1 / p}\right) \leqslant 6\left(p^{*}-1\right)$. Recall that $p \geqslant 2$, so $p^{*}=p$ and $1<q \leqslant 2$, hence

$$
\begin{aligned}
\frac{1+\gamma}{2 \gamma}\left(\left(\frac{q}{p}\right)^{1 / q}+\left(\frac{p}{q}\right)^{1 / p}\right) & =\frac{8+q(q-1)}{2}(q-1)^{\frac{1}{q}-1}(p-1) \\
& \leqslant(q+3)(q-1)^{\frac{1}{q}-1}(p-1) \leqslant 6(p-1)
\end{aligned}
$$

A proof of the last inequality can be found in [16, pp. 15-16]. If $p \leqslant 2$, we swap $p$ with $q$ and $P_{t} f$ with $Q_{t} g$ in the definition of $b_{\kappa}$, i.e., it becomes $b_{\kappa}(x, t)=$ $B_{\kappa}\left(Q_{t} g(x), P_{t} f(x)\right)$, and we proceed as before. Since $p^{*}=\max (p, q)$, the conclusion holds.
3.3. Proof of Theorem 2. Having proved the bilinear embedding theorem, we move on to the main result of this section.

Proof. If $d=1$, then, by (2.1), $L^{\prime}=L+2$ and equations (4.8) and (4.9) imply that $\mathbf{R}^{\prime}$ is the adjoint of $\mathbf{R}$ from Section 5.4 of [16], so Theorem 10 (there) gives the desired result. Now assume that $d \geqslant 2$. By duality, it is sufficient to prove that

$$
\left|\sum_{i=1}^{d}\left\langle R_{i}^{\prime} f, g_{i}\right\rangle\right| \leqslant 48\left(p^{*}-1\right)\|f\|_{p}\left\|\left(\sum_{i=1}^{d}\left|g_{i}\right|^{2}\right)^{1 / 2}\right\|_{q}
$$

for any $f, g_{i} \in \mathcal{D}$. Since $\mathcal{D}$ is dense in $L^{p}$ for $1 \leqslant p<\infty$, this will mean that $\mathbf{R}^{\prime}$ admits a bounded extension to the whole $L^{p}$ space with the same norm. By Lemma 3, we
have

$$
\begin{aligned}
& \left|\sum_{i=1}^{d}\left\langle R_{i}^{\prime} f, g_{i}\right\rangle\right| \leqslant 4 \int_{0}^{\infty} \sum_{i=1}^{d}\left|\left\langle\delta_{i}^{*} P_{t} f, \partial_{t} Q_{t}^{i} g\right\rangle\right| t d t \\
& \leqslant 4 \int_{0}^{\infty} \int_{\mathbb{R}^{d}} \sum_{i=1}^{d}\left(\left|\partial_{x_{i}} P_{t} f(x)\right|+\left|x_{i} P_{t} f(x)\right|\right)\left|\partial_{t} Q_{t}^{i} g_{i}(x)\right| d x t d t \\
& \leqslant 4 \int_{0}^{\infty} \int_{\mathbb{R}^{d}}\left(\left(\sum_{i=1}^{d}\left|\partial_{x_{i}} P_{t} f(x)\right|^{2}\right)^{1 / 2}+\sqrt{r(x)}\left|P_{t} f(x)\right|\right)|G(x, t)|_{*} d x t d t \\
& \leqslant 8 \int_{0}^{\infty} \int_{\mathbb{R}^{d}}|F(x, t)|_{*}|G(x, t)|_{*} d x t d t \leqslant 48\left(p^{*}-1\right)\|f\|_{p}\left\|\left(\sum_{i=1}^{d}\left|g_{i}\right|^{2}\right)^{1 / 2}\right\|_{q} .
\end{aligned}
$$

The last inequality follows from Theorem 4 .

## 4. RiesZ transforms of the second kind

This section is devoted to estimating the norm of the vector of the Riesz transforms

$$
\tilde{R}_{i} f(x)=\delta_{i}^{*} L^{-1 / 2} f(x)
$$

As noted earlier, we will give a result similar to Corollary 1 from [5] but with an explicit constant.

We want to estimate

$$
\|\tilde{\mathbf{R}} f\|_{p}:=\left(\int_{\mathbb{R}^{d}}|\tilde{\mathbf{R}} f(x)|^{p} d x\right)^{1 / p}
$$

Observe that for $f \in \mathcal{D}$ it holds

$$
\begin{aligned}
\tilde{R}_{i} f(x) & =\delta_{i}^{*} L^{-1 / 2} f(x)=\left(-\partial_{x_{i}}+x_{i}\right) L^{-1 / 2} f(x) \\
& =-\delta_{i} L^{-1 / 2} f(x)+2 x_{i} L^{-1 / 2} f(x) \\
& =R_{i}^{1} f(x)+R_{i}^{2} f(x) .
\end{aligned}
$$

Then $\tilde{\mathbf{R}} f(x)=\mathbf{R}^{\mathbf{1}} f(x)+\mathbf{R}^{\mathbf{2}} f(x)\left(\right.$ with $\tilde{\mathbf{R}} f(x)=\left(\tilde{R}_{1} f(x), \ldots, \tilde{R}_{d} f(x)\right)$ and $\mathbf{R}^{\mathbf{1}}$ and $\mathbf{R}^{\mathbf{2}}$ defined analogously), hence

$$
|\tilde{\mathbf{R}} f(x)| \leqslant\left|\mathbf{R}^{1} f(x)\right|+\left|\mathbf{R}^{2} f(x)\right|
$$

and

$$
\begin{equation*}
\|\tilde{\mathbf{R}} f\|_{p} \leqslant\left\|\mathbf{R}^{1} f\right\|_{p}+\left\|\mathbf{R}^{2} f\right\|_{p} \tag{4.1}
\end{equation*}
$$

Theorem 10 from [16] gives the bound of $48\left(p^{*}-1\right)$ for the $L^{p}$ norm of $\mathbf{R}^{\mathbf{1}}$, so we will focus on $\mathbf{R}^{2}$. Next, note that

$$
\left|\mathbf{R}^{2} f(x)\right|=2\left(\sum_{i=1}^{d}\left|x_{i} L^{-1 / 2} f(x)\right|^{2}\right)^{1 / 2}=2|x|\left|L^{-1 / 2} f(x)\right|
$$

which means that it is sufficient to deal with the operator $|x| L^{-1 / 2}$, formally defined on $\mathcal{D}$ as $S f(x)=|x| L^{-1 / 2} f(x)$. This operator turns out to be bounded on all $L^{p}$ spaces for $1 \leqslant p<\infty$.

Theorem 8. For $1 \leqslant p<\infty$ we have $\|S\|_{p \rightarrow p} \leqslant 3$.
In order to prove this theorem, we first derive an expression for the kernel of $S$, i.e., a function $K(x, y)$ such that

$$
S f(x)=\int_{\mathbb{R}^{d}} K(x, y) f(y) d y \quad \text { for } f \in \mathcal{D}
$$

Lemma 9. For $x, y \in \mathbb{R}^{d}$ we have

$$
K(x, y)=|x| \int_{0}^{\infty} \frac{1}{\sqrt{t}} K_{t}(x, y) d t
$$

where

$$
K_{t}(x, y)=\frac{C_{d}}{(\sinh 2 t)^{d / 2}} \exp \left(-\frac{|x-y|^{2}}{4 \tanh t}-\frac{\tanh t}{4}|x+y|^{2}\right), \quad C_{d}=\frac{1}{(2 \pi)^{d / 2} \sqrt{\pi}}
$$

Proof. Equation (16) in [6] states that

$$
e^{-t L} f(x)=\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{R}^{d}} K_{t}^{\prime}(x, y) f(y) d y
$$

with

$$
\begin{aligned}
K_{t}^{\prime}(x, y) & =\frac{1}{(\sinh 2 t)^{d / 2}} \exp \left(-\frac{|x|^{2}+|y|^{2}}{2} \operatorname{coth} 2 t+\frac{\langle x, y\rangle}{\sinh 2 t}\right) \\
& =\frac{1}{(\sinh 2 t)^{d / 2}} \exp \left(-\frac{|x-y|^{2}}{4 \tanh t}-\frac{\tanh t}{4}|x+y|^{2}\right)
\end{aligned}
$$

Note also that

$$
\lambda^{-1 / 2}=\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} e^{-t \lambda} \frac{1}{\sqrt{t}} d t
$$

Since $\mathcal{D}=\operatorname{lin}\left\{h_{n}: n \in \mathbb{N}^{d}\right\}$, it is sufficient to prove the formula for $f=h_{n}$. We have

$$
\begin{aligned}
L^{-1 / 2} h_{n}(x) & =\lambda_{n}^{-1 / 2} h_{n}(x)=\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} e^{-t \lambda_{n}} h_{n}(x) \frac{1}{\sqrt{t}} d t \\
& =\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} e^{-t L} h_{n}(x) \frac{1}{\sqrt{t}} d t \\
& =\frac{1}{\sqrt{\pi}} \frac{1}{(2 \pi)^{d / 2}} \int_{0}^{\infty} \frac{1}{\sqrt{t}} \int_{\mathbb{R}^{d}} K_{t}^{\prime}(x, y) h_{n}(y) d y d t .
\end{aligned}
$$

This integral is absolutely convergent, so we may interchange the order of integration and the conclusion follows.

Next we prove that the operator $T$ defined on $L^{p}, 1 \leqslant p \leqslant \infty$, as

$$
T f(x)=\int_{\mathbb{R}^{d}} K(x, y) f(y) d y
$$

is bounded uniformly in $d$ and $p$. This will mean that $S$ is bounded on $\mathcal{D}$ in $L^{p}$ norm and, by density, that it has a unique bounded extension to $L^{p}$ for $1 \leqslant p<\infty$ with the same norm. We want to use interpolation and our goal is to prove that

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} K(x, z) d z \leqslant 2 \quad \text { and } \quad \int_{\mathbb{R}^{d}} K(z, y) d z \leqslant 3 \tag{4.2}
\end{equation*}
$$

for all $x, y \in \mathbb{R}^{d}$. Clearly, we have

$$
\begin{align*}
\int_{\mathbb{R}^{d}} K(z, y) d z & =\int_{\mathbb{R}^{d}}|z| \int_{0}^{\infty} \frac{1}{\sqrt{t}} K_{t}(z, y) d t d z \\
& \leqslant \int_{\mathbb{R}^{d}}|y| \int_{0}^{\infty} \frac{1}{\sqrt{t}} K_{t}(z, y) d t d z  \tag{4.3}\\
& +\int_{\mathbb{R}^{d}}|y-z| \int_{0}^{\infty} \frac{1}{\sqrt{t}} K_{t}(z, y) d t d z
\end{align*}
$$

so, by symmetry of $K_{t}$, it is sufficient to prove the first inequality of (4.2) and the following proposition.

Proposition 10. For $y \in \mathbb{R}^{d}$ it holds

$$
\begin{equation*}
\int_{\mathbb{R}^{d}}|y-z| \int_{0}^{\infty} \frac{1}{\sqrt{t}} K_{t}(z, y) d t d z \leqslant 1 \tag{4.4}
\end{equation*}
$$

Proof. We begin with an auxiliary computation:

$$
\begin{equation*}
I(k):=\int_{\mathbb{R}^{d}}|x| e^{-k|x|^{2}} d x=\frac{\Gamma\left(\frac{d+1}{2}\right)}{\Gamma\left(\frac{d}{2}\right)} \frac{\pi^{d / 2}}{k^{(d+1) / 2}} \quad \text { for } k \geqslant 0 \tag{4.5}
\end{equation*}
$$

To prove (4.5), let $S_{d}=\frac{2 \pi^{d / 2}}{\Gamma\left(\frac{d}{2}\right)}$ denote the surface area of the unit sphere in the $d$-dimensional Euclidean space. Then we can write

$$
\begin{aligned}
\int_{\mathbb{R}^{d}}|x| e^{-k|x|^{2}} d x & =\int_{0}^{\infty} r e^{-k r^{2}} r^{d-1} S_{d} d r=\frac{S_{d}}{2 k^{(d+1) / 2}} \int_{0}^{\infty} x^{(d-1) / 2} e^{-x} d x \\
& =\frac{\Gamma\left(\frac{d+1}{2}\right)}{\Gamma\left(\frac{d}{2}\right)} \frac{\pi^{d / 2}}{k^{(d+1) / 2}}
\end{aligned}
$$

Coming back to (4.4), in view of (4.5) we have, for $t \geqslant 0$,

$$
\begin{aligned}
\int_{\mathbb{R}^{d}}|x-y| K_{t}(x, y) d x & =\frac{C_{d}}{(\sinh 2 t)^{d / 2}} \int_{\mathbb{R}^{d}}|x-y| \exp \left(-\frac{|x-y|^{2}}{4 \tanh t}-\frac{\tanh t}{4}|x+y|^{2}\right) d x \\
& \leqslant \frac{C_{d}}{(\sinh 2 t)^{d / 2}} \int_{\mathbb{R}^{d}}|x-y| \exp \left(-\frac{|x-y|^{2}}{4 \tanh t}\right) d x \\
& =\frac{C_{d}}{(\sinh 2 t)^{d / 2}} \int_{\mathbb{R}^{d}}|x| \exp \left(-\frac{|x|^{2}}{4 \tanh t}\right) d x \\
& =\frac{C_{d}}{(\sinh 2 t)^{d / 2}} I\left(\frac{1}{4 \tanh t}\right) \\
& =\frac{\pi^{d / 2}}{(2 \pi)^{d / 2} \sqrt{\pi}} \frac{\Gamma\left(\frac{d+1}{2}\right)}{\Gamma\left(\frac{d}{2}\right)} \frac{(4 \tanh t)^{(d+1) / 2}}{(\sinh 2 t)^{d / 2}} \\
& =\frac{1}{2^{d / 2} \sqrt{\pi}} \frac{\Gamma\left(\frac{d+1}{2}\right)}{\Gamma\left(\frac{d}{2}\right)} \frac{(4 \tanh t)^{(d+1) / 2}}{(\sinh 2 t)^{d / 2}} .
\end{aligned}
$$

Plugging it into (4.4), we get

$$
\int_{\mathbb{R}^{d}}|y-z| \int_{0}^{\infty} \frac{1}{\sqrt{t}} K_{t}(z, y) d t d z \leqslant \frac{1}{2^{d / 2} \sqrt{\pi}} \frac{\Gamma\left(\frac{d+1}{2}\right)}{\Gamma\left(\frac{d}{2}\right)} \int_{0}^{\infty} \frac{(4 \tanh t)^{(d+1) / 2}}{(\sinh 2 t)^{d / 2}} \frac{d t}{\sqrt{t}}
$$

To estimate the last integral, we will use formula [12, 5.12.7]:

$$
\int_{0}^{\infty} \frac{1}{(\cosh t)^{2 a}} d t=4^{a-1} \mathrm{~B}(a, a)
$$

where B denotes the beta function. We obtain

$$
\begin{aligned}
\int_{0}^{\infty} \frac{(4 \tanh t)^{(d+1) / 2}}{(\sinh 2 t)^{d / 2}} \frac{d t}{\sqrt{t}} & =\frac{4^{(d+1) / 2}}{2^{d / 2}} \int_{0}^{\infty}\left(\frac{\tanh t}{t}\right)^{1 / 2} \frac{1}{(\cosh t)^{d}} d t \\
& \leqslant 2^{\frac{d}{2}+1} \int_{0}^{\infty} \frac{1}{(\cosh t)^{d}} d t=2^{\frac{d}{2}+1} \cdot 4^{\frac{d}{2}-1} \mathrm{~B}\left(\frac{d}{2}, \frac{d}{2}\right) \\
& =2^{\frac{3 d}{2}-1} \frac{\Gamma\left(\frac{d}{2}\right)^{2}}{\Gamma(d)}
\end{aligned}
$$

Finally, using the Legendre duplication formula $\left(\Gamma(z) \Gamma\left(z+\frac{1}{2}\right)=2^{1-2 z} \sqrt{\pi} \Gamma(2 z)\right)$, we get

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}}|y-z| \int_{0}^{\infty} \frac{1}{\sqrt{t}} K_{t}(z, y) d t d z \\
& \leqslant 2^{\frac{3 d}{2}-1} \frac{1}{2^{d / 2} \sqrt{\pi}} \frac{\Gamma\left(\frac{d+1}{2}\right)}{\Gamma\left(\frac{d}{2}\right)} \frac{\Gamma\left(\frac{d}{2}\right)^{2}}{\Gamma(d)}=2^{d-1} \frac{\Gamma\left(\frac{d+1}{2}\right) \Gamma\left(\frac{d}{2}\right)}{\sqrt{\pi} \Gamma(d)}=1 .
\end{aligned}
$$

Now it remains to justify the first inequality of 4.2).
Proposition 11. For $x \in \mathbb{R}^{d}$ we have

$$
\int_{\mathbb{R}^{d}}|x| \int_{0}^{\infty} \frac{1}{\sqrt{t}} K_{t}(x, y) d t d y \leqslant \frac{1}{\sqrt{\pi}}+\sqrt{2} .
$$

Proof. The first step is to compute the integral $\int_{\mathbb{R}^{d}} K_{t}(x, y) d y$. Observe that

$$
\begin{aligned}
& \exp \left(-\frac{|x-y|^{2}}{4 \tanh t}-\frac{\tanh t}{4}|x+y|^{2}\right)= \\
& \exp \left(-\frac{1}{4}\left|y \sqrt{\tanh t+\frac{1}{\tanh t}}+x \frac{\tanh t-\frac{1}{\tanh t}}{\sqrt{\tanh t+\frac{1}{\tanh t}}}\right|^{2}-\frac{|x|^{2}}{\tanh t+\frac{1}{\tanh t}}\right)= \\
& \exp \left(-\frac{1}{4}\left|y \sqrt{2 \operatorname{coth}(2 t)}+x \frac{\tanh t-\frac{1}{\tanh t}}{\sqrt{\tanh t+\frac{1}{\tanh t}}}\right|^{2}-\frac{|x|^{2}}{2 \operatorname{coth}(2 t)}\right)
\end{aligned}
$$

hence

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}} \exp \left(-\frac{|x-y|^{2}}{4 \tanh t}-\frac{\tanh t}{4}|x+y|^{2}\right) d y= \\
& \exp \left(-\frac{|x|^{2}}{2 \operatorname{coth}(2 t)}\right) \int_{\mathbb{R}^{d}} \exp \left(-\frac{1}{4}|y \sqrt{2 \operatorname{coth}(2 t)}|^{2}\right) d y= \\
& \exp \left(-\frac{|x|^{2}}{2 \operatorname{coth}(2 t)}\right)\left(\frac{4 \pi}{2 \operatorname{coth}(2 t)}\right)^{d / 2},
\end{aligned}
$$

so that

$$
\int_{\mathbb{R}^{d}} K_{t}(x, y) d y=\frac{C_{d}}{(\sinh 2 t)^{d / 2}} \exp \left(-\frac{|x|^{2}}{2 \operatorname{coth}(2 t)}\right)\left(\frac{4 \pi}{2 \operatorname{coth}(2 t)}\right)^{d / 2}
$$

To estimate the integral with respect to $t$, we need to split it into two parts. Note that for $t \geqslant 0, \frac{1}{t} \leqslant 2 \operatorname{coth}(2 t)$. Let $\tau \in[0.95,0.96]$ denote the unique positive solution of $2 \operatorname{coth}(2 t)=\frac{2}{t}$. It follows that $2 \operatorname{coth}(2 t) \leqslant \frac{2}{t}$ for $0 \leqslant t \leqslant \tau$. Thus, we obtain

$$
\begin{align*}
& |x| \int_{0}^{\tau} \frac{1}{(\sinh 2 t)^{d / 2}} \frac{1}{\sqrt{t}} \exp \left(-\frac{|x|^{2}}{2 \operatorname{coth}(2 t)}\right)\left(\frac{4 \pi}{2 \operatorname{coth}(2 t)}\right)^{d / 2} d t \leqslant \\
& |x| \int_{0}^{\tau} \frac{1}{(2 t)^{d / 2}} \exp \left(-\frac{t|x|^{2}}{2}\right)(4 \pi)^{d / 2} \frac{t^{d / 2}}{\sqrt{t}} d t=  \tag{4.6}\\
& |x|(2 \pi)^{d / 2} \int_{0}^{\tau} \exp \left(-\frac{t|x|^{2}}{2}\right) \frac{1}{\sqrt{t}} d t \leqslant \\
& |x|(2 \pi)^{d / 2} \int_{0}^{\infty} \exp \left(-\frac{t|x|^{2}}{2}\right) \frac{1}{\sqrt{t}} d t=|x|(2 \pi)^{d / 2} \sqrt{\frac{2 \pi}{|x|^{2}}}=(2 \pi)^{(d+1) / 2} .
\end{align*}
$$

For the second part, when $t \geqslant \tau$ and $2 \operatorname{coth}(2 t) \leqslant \frac{2}{\tau}$, calculations are as follows:

$$
\begin{align*}
& |x| \int_{\tau}^{\infty} \frac{1}{(\sinh 2 t)^{d / 2}} \frac{1}{\sqrt{t}} \exp \left(-\frac{|x|^{2}}{2 \operatorname{coth}(2 t)}\right)\left(\frac{4 \pi}{2 \operatorname{coth}(2 t)}\right)^{d / 2} d t \leqslant \\
& |x| \exp \left(-\frac{\tau|x|^{2}}{2}\right) \int_{\tau}^{\infty} \frac{1}{(\sinh 2 t)^{d / 2}}\left(\frac{4 \pi}{2}\right)^{d / 2} \frac{1}{\sqrt{t}} d t \leqslant  \tag{4.7}\\
& |x| \exp \left(-\frac{\tau|x|^{2}}{2}\right) \frac{1}{\sqrt{\tau}}(2 \pi)^{d / 2} \int_{\tau}^{\infty}\left(\frac{4}{e^{2 t}}\right)^{d / 2} d t \leqslant \\
& \frac{1}{\tau \sqrt{e}}(2 \pi)^{d / 2} 2^{d} \int_{\tau}^{\infty} e^{-t d} d t \leqslant(2 \pi)^{d / 2} 2^{d} \frac{e^{-\tau d}}{d} \leqslant(2 \pi)^{d / 2}
\end{align*}
$$

In the second inequality we used the fact that $\sinh (2 t) \geqslant \frac{e^{2 t}}{4}$ for $t \geqslant \tau$. Combining (4.6) and (4.7) and recalling the definition of $K_{t}$ completes the proof.

Now we are ready to prove the main theorem of this section.
Proof of Theorem 8. Proposition 10. Proposition 11 and (4.3) imply that

$$
\int_{\mathbb{R}^{d}} K(x, z) d z \leqslant 3 \quad \text { and } \quad \int_{\mathbb{R}^{d}} K(z, y) d z \leqslant 3
$$

hence $T$ is bounded on $L^{1}$ and $L^{\infty}$ with norm at most 3. Using the Riesz-Thorin interpolation theorem we obtain $\|T\|_{p \rightarrow p} \leqslant 3$ for $1 \leqslant p \leqslant \infty$ and since $S=T$ on $\mathcal{D}$ - a dense subspace of $L^{p}$ for $1 \leqslant p<\infty-S$ has a unique bounded extension to $L^{p}$ with norm at most 3 .

Recollecting (4.1), we see that Theorem 8 and Theorem 10 from [16] imply an $L^{p}$ norm estimate for $\tilde{\mathbf{R}} f=\left(\tilde{R}_{1} f, \ldots, \tilde{R}_{d} f\right)$.
Theorem 12. For $f \in L^{p}$ we have

$$
\|\tilde{\mathbf{R}} f\|_{p}=\left(\int_{\mathbb{R}^{d}}|\tilde{\mathbf{R}} f(x)|^{p} d x\right)^{1 / p} \leqslant 54\left(p^{*}-1\right)\|f\|_{p}
$$

As a corollary of the above result we will prove one more theorem. Let

$$
\mathbf{R}^{*} f=\left(R_{1}^{*} f, \ldots, R_{d}^{*} f\right)
$$

with

$$
R_{i}^{*} f(x)=\delta_{i}^{*}(L+2)^{-1 / 2} f(x)
$$

It is worth noting that each $R_{i}^{*}$ is the adjoint of $R_{i}=\delta_{i} L^{-1 / 2}$ - the 'usual' RieszHermite transform. To prove it, we check that $\left\langle h_{n}, R_{i}^{*} h_{k}\right\rangle=\left\langle R_{i} h_{n}, h_{k}\right\rangle$. For the left-hand side we use item 2, from Lemma 1 .

$$
\begin{align*}
\left\langle h_{n}, R_{i}^{*} h_{k}\right\rangle & =\left\langle h_{n}, \delta_{i}^{*}(L+2)^{-1 / 2} h_{k}\right\rangle=\left(\lambda_{k}+2\right)^{-1 / 2}\left\langle h_{n}, \delta^{*} h_{k}\right\rangle \\
& =\sqrt{2\left(k_{i}+1\right)\left(\lambda_{k}+2\right)^{-1 / 2}\left\langle h_{n}, h_{k+e_{i}}\right\rangle} \\
& = \begin{cases}\sqrt{\frac{2\left(k_{i}+1\right)}{2|k|_{1}+d+2}} & \text { if } n=k+e_{i} \\
0 & \text { otherwise }\end{cases} \tag{4.8}
\end{align*}
$$

For the right-hand side we use item 1 .

$$
\begin{align*}
\left\langle R_{i} h_{n}, h_{k}\right\rangle & =\left\langle\delta_{i} L^{-1 / 2} h_{n}, h_{k}\right\rangle=\lambda_{n}^{-1 / 2}\left\langle\delta_{i} h_{n}, h_{k}\right\rangle \\
& =\sqrt{2 n_{i}} \lambda_{n}^{-1 / 2}\left\langle h_{n-e_{i}}, h_{k}\right\rangle \\
& = \begin{cases}\sqrt{\frac{2 n_{i}}{2|n|_{1}+d}} & \text { if } n-e_{i}=k \\
0 & \text { otherwise }\end{cases} \tag{4.9}
\end{align*}
$$

Now we are ready to state the last theorem of this paper.
Theorem 13. For $f \in L^{p}$ we have

$$
\left\|\mathbf{R}^{*} f\right\|_{p}=\left(\int_{\mathbb{R}^{d}}\left|\mathbf{R}^{*} f(x)\right|^{p} d x\right)^{1 / p} \leqslant 108\left(p^{*}-1\right)\|f\|_{p}
$$

To prove this theorem, we perform a slightly more general calculation. For $a>0$ we define

$$
U_{a} f(x)=\left(L(L+2 a)^{-1}\right)^{1 / 2} f(x), \quad f \in \mathcal{D}
$$

Proposition 14. For $1 \leqslant p<\infty$ we have $\left\|U_{a}\right\|_{p \rightarrow p} \leqslant 2$.
Proof. We begin with a well-known fact: If $A$ is a positive operator and $\|A\| \leqslant 1$, then

$$
\begin{equation*}
(I-A)^{1 / 2}=I-\sum_{n=1}^{\infty} c_{n} A^{n} \tag{4.10}
\end{equation*}
$$

where

$$
c_{n}=\frac{(2 n)!}{(n!)^{2}(2 n-1) 4^{n}} \quad \text { and } \quad \sum_{n=1}^{\infty} c_{n}=1
$$

Next, observe that

$$
\left(L(L+2 a)^{-1}\right)^{1 / 2}=\left(I-2 a(L+2 a)^{-1}\right)^{1 / 2}
$$

so, taking $A=2 a(L+2 a)^{-1}$ in 4.10, we see that it is enough to prove that $\left\|(L+2 a)^{-1}\right\|_{p \rightarrow p} \leqslant \frac{1}{2 a}$. We proceed as in the proof of Theorem 8. First, we find the kernel of $(L+2 a)^{-1}$, then prove its boundedness on $L^{1}$ and $L^{\infty}$ and finally use interpolation.

A computation similar to the proof of Lemma 9 shows that

$$
(L+2 a)^{-1} f(x)=\int_{\mathbb{R}^{d}} \tilde{K}(x, y) f(y) d y \quad \text { for } f \in D
$$

where

$$
\tilde{K}(x, y)=\int_{0}^{\infty} e^{-2 a t} \tilde{K}_{t}(x, y) d t
$$

and

$$
\tilde{K}_{t}(x, y)=\frac{\tilde{C}_{d}}{(\sinh 2 t)^{d / 2}} \exp \left(-\frac{|x-y|^{2}}{4 \tanh t}-\frac{\tanh t}{4}|x+y|^{2}\right), \quad \tilde{C}_{d}=\frac{1}{(2 \pi)^{d / 2}}
$$

Since this time the kernel is symmetric, we only prove that

$$
\int_{\mathbb{R}^{d}} \tilde{K}(x, y) d y \leqslant \frac{1}{2 a} .
$$

Calculations are as follows:

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} \tilde{K}(x, y) d y & =\tilde{C}_{d} \int_{\mathbb{R}^{d}} \int_{0}^{\infty} \frac{e^{-2 a t}}{(\sinh 2 t)^{d / 2}} \exp \left(-\frac{|x-y|^{2}}{4 \tanh t}-\frac{\tanh t}{4}|x+y|^{2}\right) d t d y \\
& \leqslant \tilde{C}_{d} \int_{0}^{\infty} \frac{e^{-2 a t}}{(\sinh 2 t)^{d / 2}} \int_{\mathbb{R}^{d}} \exp \left(-\frac{|x-y|^{2}}{4 \tanh t}\right) d y d t \\
& =\tilde{C}_{d} \int_{0}^{\infty} \frac{e^{-2 a t}}{(\sinh 2 t)^{d / 2}} \int_{\mathbb{R}^{d}} \exp \left(-\frac{|y|^{2}}{4 \tanh t}\right) d y d t \\
& =\tilde{C}_{d} \int_{0}^{\infty} \frac{e^{-2 a t}}{(\sinh 2 t)^{d / 2}}(4 \pi \tanh t)^{d / 2} d t \\
& =\tilde{C}_{d} \int_{0}^{\infty} e^{-2 a t} \frac{(4 \pi)^{d / 2}}{2^{d / 2}} \frac{1}{(\cosh t)^{d}} d t \\
& =\int_{0}^{\infty} \frac{e^{-2 a t}}{(\cosh t)^{d}} d t .
\end{aligned}
$$

We split the last integral into two parts - from 0 to 1 and from 1 to $\infty$. The first part can be estimated by

$$
\int_{0}^{1} \frac{e^{-2 a t}}{(\cosh t)^{d}} d t \leqslant \int_{0}^{1} e^{-2 a t} d t=\frac{1-e^{-2 a}}{2 a}
$$

and the second one by

$$
\begin{aligned}
\int_{1}^{\infty} \frac{e^{-2 a t}}{(\cosh t)^{d}} d t & =2^{d} \int_{1}^{\infty} \frac{e^{-2 a t}}{\left(e^{t}+e^{-t}\right)^{d}} d t \\
& \leqslant 2^{d} \int_{1}^{\infty} e^{-2 a t} e^{-t d} d t \\
& =2^{d} \frac{e^{-2 a-d}}{2 a+d}
\end{aligned}
$$

Adding, we get

$$
\begin{aligned}
\int_{0}^{\infty} \frac{e^{-2 a t}}{(\cosh t)^{d}} d t & \leqslant \frac{1-e^{-2 a}}{2 a}+2^{d} \frac{e^{-2 a-d}}{2 a+d} \\
& \leqslant \frac{1+2^{d} e^{-d} e^{-2 a}-e^{-2 a}}{2 a}<\frac{1}{2 a}
\end{aligned}
$$

This means that the operator $V$ defined as

$$
V f(x)=\int_{\mathbb{R}^{d}} \tilde{K}(x, y) f(y) d y
$$

is bounded on $L^{1}$ and $L^{\infty}$ with norm at most $\frac{1}{2 a}$ and the Riesz-Thorin interpolation theorem gives its boundedness on $L^{p}$ for $1 \leqslant p \leqslant \infty$ with the same upper bound for the norm. Density of $\mathcal{D}$ implies that $(L+2 a)^{-1}$ has a unique bounded extension to the whole $L^{p}$ space, $1 \leqslant p<\infty$, with norm at most $\frac{1}{2 a}$. Applying 4.10 with $A=2 a(L+2 a)^{-1}$ completes the proof.

This leads us to the proof of Theorem 13.
Proof of Theorem 13. It is sufficient to note that for $f \in \mathcal{D}$

$$
R_{i}^{*} f=\delta_{i}^{*}(L+2)^{-1 / 2} f=\delta_{i}^{*} L^{-1 / 2}\left(L(L+2)^{-1}\right)^{1 / 2} f=\tilde{R}_{i} U_{1} f
$$

Now Theorem 12 and Proposition 14 complete the proof.
Finally, let us mention that in the light of (2.1), a very similar argument (with $U_{d}$ instead of $U_{1}$ ) can be used to prove Theorem 2 with the constant equal to 108.

## Acknowledgements

The author is very grateful to Błażej Wróbel for suggesting the topic, supervision and helpful discussions.

Research was supported by the National Science Centre, Poland, research project No. 2018/31/B/ST1/00204.

The paper will constitute author's master's thesis.

## References

[1] A. Carbonaro, O. Dragičević, Bellman function and dimension-free estimates in a theorem of Bakry, J. Funct. Anal. 265 (2013), pp. 1085-1104.
[2] A. Carbonaro, O. Dragičević, Functional calculus for generators of symmetric contraction semigroups, Duke Math. J. (5) 166 (2017), pp. 937-974.
[3] O. Dragičević, A. Volberg, Bellman functions and dimensionless estimates of Littlewood-Paley type, J. Oper. Theory (1) 56 (2006), pp. 167-198.
[4] O. Dragičević, A. Volberg, Bilinear embedding for real elliptic differential operators in divergence form with potentials, J. Funct. Anal. 261 (2011), pp. 2816-2828.
[5] O. Dragičević, A. Volberg, Linear dimension-free estimates in the embedding theorem for Schrödinger operators, J. London Math. Soc. (2) 85 (2012), pp. 191-222.
[6] O. Dragičević, A. Volberg, Linear dimension-free estimates for the Hermite-Riesz transforms, https://arxiv.org/abs/0711.2460
[7] E. Harboure, L. de Rosa, C. Segovia and J. L. Torrea, $L^{p}$-dimension free boundedness for Riesz transforms associated to Hermite functions, Math. Ann. 328 (2004) pp. 653-682.
[8] F. Lust-Piquard, Dimension free estimates for Riesz transforms associated to the harmonic oscillator on $\mathbb{R}^{n}$, Potential Anal. 24 (2006) pp. 47-62.
[9] G. Mauceri, M. Spinelli, Riesz transforms and spectral multipliers of the Hodge-Laguerre Operator, J. Funct. Anal. 269 (2015), pp. 3402-3457.
[10] G. Mauceri, M. Spinelli, Riesz transforms and spectral multipliers of the Hodge-Laguerre Operator, https://arxiv.org/abs/1407.2838.
[11] F. L. Nazarov, S. R. Treil, The hunt for a Bellman function: applications to estimates for singular integral operators and to other classical problems of harmonic analysis, St. Petersburg Math. J. 8 (1997), pp. 721-824.
[12] F. Olver, D. Lozier, R. Boisvert, C. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, 2010.
[13] A. Nowak, K. Stempak, $L^{2}$-theory of Riesz transforms for orthogonal expansions, J. Fourier Anal. Appl. (6) 12 (2006), pp. 675-711.
[14] E. M. Stein, Some results in harmonic analysis in $\mathbb{R}^{n}$, for $n \rightarrow \infty$, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 1, pp. 71-73.
[15] S. Thangavelu, Lectures on Hermite and Laguerre expansions, Mathematical Notes 42, Princeton University Press, Princeton, NJ, 1993.
[16] B. Wróbel, Dimension-free $L^{p}$ estimates for vectors of Riesz transforms associated with orthogonal expansions, Anal. PDE 11 (2018), no. 3, pp. 745-773.

Instytut Matematyczny, Uniwersytet Wroceawski, Pl. Grunwaldzki 2/4, 50-384 Wroceaw, Poland


[^0]:    2010 Mathematics Subject Classification. 42C10, 42A50, 33C50.

