Counting faces of random polytopes and applications

Patrick Tardivel

Let us consider the following high-dimensional linear regression model

$$
Y=X \beta+\varepsilon,
$$

where X is a $n \times p$ matrix with $n<p, \beta \in \mathbb{R}^{p}$ is an unknown parameter and $\varepsilon \in \mathbb{R}^{n}$ is a centered random noise. Our purpose is to recover the unknown parameter β.

Even in the noiseless case when $\varepsilon=\mathbf{0}$ (and thus $Y=X \beta$) recovering the parameter β is not obvious since β is a solution among many of the linear system $Y=X \gamma$. However, under the assumption that lot of components β are null, one can recover β by solving the convex optimization problem

$$
\begin{equation*}
\operatorname{argmin}\|\gamma\|_{1} \text { subject to } X \gamma=Y \text {. } \tag{1}
\end{equation*}
$$

When $X=\left(X_{1}|\ldots| X_{p}\right)$ is a random $n \times p$ matrix having i.i.d $\mathcal{N}(0,1)$ entries, the phase transition curve provides theoretical guaranties so that solving problem (1) allows to recover β. Indeed, when n and p are both very large and $\varepsilon=\mathbf{0}$, this curve provides a bound k, depending on n / p, so that β can be recovered by solving (1) under the assumption that $\left|\left\{i \in\{1, \ldots, p\} \mid \beta_{i} \neq 0\right\}\right|<k$.

In this talk, I will show that the phase transition curve is related to counting faces of the random polytope $\operatorname{conv}\left(\pm X_{1}, \ldots, \pm X_{p}\right)$. Finally, I will introduce open questions related to the phase transition curve which I would like to investigate in my future research.

