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FRACTIONAL POROUS MEDIA EQUATIONS: EXISTENCE AND

UNIQUENESS OF WEAK SOLUTIONS WITH MEASURE DATA

GABRIELE GRILLO, MATTEO MURATORI, FABIO PUNZO

Abstract. We prove existence and uniqueness of solutions to a class of porous media equations
driven by the fractional Laplacian when the initial data are positive finite Radon measures on the
Euclidean space Rd. For given solutions without a prescribed initial condition, the problem of
existence and uniqueness of the initial trace is also addressed. By the same methods we can also
treat weighted fractional porous media equations, with a weight that can be singular at the origin,
and must have a sufficiently slow decay at infinity (power-like). In particular, we show that the
Barenblatt-type solutions exist and are unique. Such a result has a crucial role in [24], where the
asymptotic behavior of solutions is investigated. Our uniqueness result solves a problem left open,
even in the non-weighted case, in [42].

1. Introduction

The main goal of this note is to prove existence and uniqueness of solutions to the following
problem: {

ρ(x)ut + (−∆)s (um) = 0 in R
d × R

+ ,

ρ(x)u = µ on R
d × {0} ,

(1.1)

where we assume that s ∈ (0, 1), d > 2s, m > 1, µ is a positive finite Radon measure on R
d (so that

u ≥ 0) and that the (Lebesgue) measurable weight ρ satisfies

c|x|−γ0 ≤ ρ(x) ≤ C|x|−γ0 a.e. in B1 and c|x|−γ ≤ ρ(x) ≤ C|x|−γ a.e. in Bc
1 (1.2)

for some γ ∈ [0, 2s), γ0 ∈ [0, γ] and 0 < c < C, where Br = Br(0). Furthermore, for any given
solution to the differential equation in (1.1), namely without a prescribed initial datum, we also
prove that there exists a unique initial trace which is a positive finite Radon measure (see Theorem
3.3). Observe that this result suggests that is quite natural to consider a positive finite Radon
measure µ as the initial condition in (1.1). We stress that the results concerning uniqueness are new
even for ρ ≡ 1, which obviously fulfills (1.2), thus solving an open problem posed in [42] where such
a problem is addressed for initial data given by Dirac deltas, namely for Barenblatt solutions. In this
case, the problem is known as fractional porous media equation and has been thoroughly analysed
in [17, 18] for initial data in L1(Rd). More in general, in view of various applications well outlined in
the literature (see e.g. [26]), we also consider the weight ρ(x) since the same methods of proof work
in this case as well. In this regard, observe that even if ρ ∈ C(Rd) has a suitable decay at infinity,
and µ = u0 ∈ L1

ρ(R
d), then the asymptotics of any solution can be determined by referring to the

Barenblatt solution (i.e. the solution to problem (1.1) with µ = δ) for the problem with singular,
homogeneous weight ρ(x) = |x|−γ , which makes the latter scale-invariant. Also for this reason we
treat weights ρ that satisfy (1.2), thus being allowed to be singular at x = 0. However, some further
restrictions on s, d and γ will be required and clarified later, see Theorems 3.2 and 3.4. Let us
mention that our results entailing the existence and uniqueness of Barenblatt solutions for singular
weights are used in a crucial way in [24] to obtain the asymptotic behavior recalled above.

The analysis of the evolutions addressed here poses significant difficulties especially as concerns
uniqueness, as can be guessed even when considering their linear analogues. In fact, the first issue

Key words and phrases. Weighted porous media equation; weighted Sobolev inequalities; nonlinear diffusion equa-
tions; smoothing effect; asymptotics of solutions.

1

http://arxiv.org/abs/1312.6076v3


2 GABRIELE GRILLO, MATTEO MURATORI, FABIO PUNZO

we have to deal with is the essential self-adjointness of the operator formally defined as ρ−1(−∆)s

on test functions, and the validity of the Markov property for the associated linear evolution. This
will be crucial in the uniqueness proof and holds only if γ is not too large. For larger γ one expects
that suitable conditions at infinity should be required to recover self-adjointness.

Notice that the study of weighted linear differential operators of second order has a long story,
see for example [13, Section 4.7] or [32]. Recently, the analysis of the spectral properties of operators
which are modeled on the critical operator formally given by |x|2∆ has been performed in [14].

As for nonlinear evolutions, the study of porous media and fast diffusion equations with measure
data can be tracked back to the pioneering papers [2, 7, 34, 11]. See [43, Section 13] for details and
additional references. The fast diffusion case, which will not be dealt with here, is investigated in
[8, 9]: notice that for such evolutions the Dirac delta may not be smoothed into a regular solution,
so that different techniques must be used, see the recent paper [35] for a general approach. In [17,
18], the fractional porous media and fast diffusion equations have been introduced and thoroughly
studied for initial data which are integrable functions. The construction of Barenblatt solutions and
the analysis of their role as asymptotic attractors for general integrable data is performed in [42].
Existence and uniqueness of solutions in the fractional, weighted case is studied in [37, 38]: however,
the weight there cannot be singular and data cannot be measures.

Semilinear heat equations with measure data have a long history as well and have recently been
studied also in the fractional case, see e.g. [29, 10] and references quoted. We remark that the
terminology “measure data” is sometimes used in different contexts in which a measure appears as
a source term in certain evolution equations: see e.g. [30].

There is a huge literature on the weighted porous media equation: see for example [15, 16, 20,
21, 22, 23, 25, 26, 27, 36, 39, 40, 41] and references quoted therein. It should be pointed out that
the possible singularity of the weight, and the fact that we consider measure data as well, makes our
problem significantly different both from the non-weighted, fractional case and from the weighted,
non-fractional case: straightforward modifications of the strategies used to tackle such problems
turn out not to be applicable here.

Finally, notice that fractional porous media equations are being used as a model in several applied
contexts, see e.g. [5, Appendix B] and references quoted for details.

Outline of the paper. The paper is organized as follows. Section 2 briefly collects some preliminary
tools on measure theory, fractional Laplacians and fractional Sobolev spaces. In Section 3 we state
our main results. In Section 4 we prove existence of weak solutions and the result concerning existence
and uniqueness of the initial trace, whereas in Section 5 uniqueness, which is by far the most delicate
issue, is addressed: notice that, although we do not state this explicitly, the proofs work also in the
case s = 1 and the corresponding results are new in this context as well for the weighted case. In
proving uniqueness, we use a “duality method”, following the same line of reasoning introduced by M.
Pierre in [34]. This entails serious new difficulties due to the presence of the fractional diffusion and
of the weight ρ. In Appendix A we recall some technical results on the fractional Laplacian, which
are exploited in several approximating procedures developed in the proofs below. In Appendix B
we sketch the proof of the main properties of the linear operator formally given by ρ−1(−∆)s. Such
properties are of independent interest but are also crucial in order to establish uniqueness.

2. Preliminary tools

In this section we outline some basic notation, definitions and properties that we shall make us of
later, which concern weighted Lebesgue spaces, measures, fractional Laplacians, fractional Sobolev
spaces and Riesz potentials of measures.
Weighted Lebesgue spaces. For a given measurable function ρ : Rd → R

+ (that is, a weight),
we denote as Lp

ρ(R
d) (let p ∈ [1,∞)) the Banach space constituted by all (classes of equivalence of)
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measurable functions f : Rd → R such that

‖f‖p,ρ :=

(∫

Rd

|f(x)|
p
ρ(x)dx

)1/p

<∞ .

In the special case ρ(x) = |x|α (let α ∈ R) we simplify notation and replace Lp
ρ(R

d) by Lp
α(R

d) and

‖f‖p,ρ by ‖f‖p,α. For the usual unweighted Lebesgue spaces we keep the symbol Lp(Rd), denoting
the corresponding norms as ‖f‖p or ‖f‖Lp(Rd).

Positive finite Radon measures on R
d. Since in (1.1) we deal with positive finite Radon measures

µ on R
d, we recall some basic properties enjoyed by the set of such measures, which we denote as

M(Rd) (with a slight abuse of notation: this is the usual symbol for the space of signed measures
on R

d). To begin with, consider a sequence {µn} ⊂ M(Rd). Following the notation of [34], we say
that {µn} converges to µ ∈ M(Rd) in σ(M(Rd), Cc(R

d)) if there holds

lim
n→∞

∫

Rd

φdµn =

∫

Rd

φdµ ∀φ ∈ Cc(R
d) , (2.1)

where Cc(R
d) is the space of continuous, compactly supported functions on R

d. This is usually
referred to as local weak∗ convergence (see [1, Definition 1.58]). A classical theorem in measure
theory asserts that if

sup
n
µn(R

d) <∞ (2.2)

then there exists µ ∈ M(Rd) such that {µn} converges to µ in σ(M(Rd), Cc(R
d)) up to subsequences

(see [1, Theorem 1.59]). The same holds if we replace Cc(R
d) with C0(R

d), the latter being the
closure of the former w.r.t. ‖ · ‖∞. A stronger notion of convergence is the following. A sequence
{µn} ⊂ M(Rd) is said to converge to µ ∈ M(Rd) in σ(M(Rd), Cb(R

d)) if

lim
n→∞

∫

Rd

φdµn =

∫

Rd

φdµ ∀φ ∈ Cb(R
d) , (2.3)

where Cb(R
d) is the space of continuous, bounded functions on R

d. Trivially, (2.3) implies (2.1). The
opposite holds under a further hypothesis. That is, if {µn} converges to µ in σ(M(Rd), Cc(R

d)) and
limn→∞ µn(R

d) = µ(Rd), then {µn} converges to µ also in σ(M(Rd), Cb(R
d)) (see [1, Proposition

1.80]). Notice that if {µn} converges to µ in σ(M(Rd), Cc(R
d)) and (2.2) holds, a priori one only

has a weak∗ lower semi-continuity property:

µ(Rd) ≤ lim inf
n→∞

µn(R
d)

(see again [1, Theorem. 1.59]).
Fractional Laplacians and fractional Sobolev spaces. The fractional s-Laplacian operator
which appears in (1.1) is defined, at least for any φ ∈ D(Rd) := C∞

c (Rd), as

(−∆)s(φ)(x) := p.v. Cd,s

∫

Rd

φ(x) − φ(y)

|x− y|d+2s
dy ∀x ∈ R

d ,

where Cd,s is a suitable positive constant depending only on d and s. However, since a priori we
have no clue about the regularity of solutions to (1.1), it is necessary to reformulate the problem in a
suitable weak sense, see Definition 3.1 below. Before doing it, we need to introduce some fractional
Sobolev spaces. Here we shall mainly deal with Ḣs(Rd), that is the closure of D(Rd) w.r.t. the norm

‖φ‖
2
Ḣs :=

Cd,s

2

∫

Rd

∫

Rd

(φ(x) − φ(y))2

|x− y|d+2s
dxdy ∀φ ∈ D(Rd) .

Notice that the space usually denoted as Hs(Rd) is just L2(Rd) ∩ Ḣs(Rd). For definitions and
properties of the general fractional Sobolev spaces W r,p(Rd) we refer the reader e.g. to [19].
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The link between the s-Laplacian and the space Ḣs(Rd) can be seen by means of the identity

Cd,s

2

∫

Rd

∫

Rd

(φ(x) − φ(y))(ψ(x) − ψ(y))

|x− y|d+2s
dxdy =

∫

Rd

(−∆)
s
2 (φ)(x) (−∆)

s
2 (ψ)(x) dx

=

∫

Rd

φ(x)(−∆)s(ψ)(x) dx

(2.4)

for all φ, ψ ∈ D(Rd), see [19, Section 3]. In particular, ‖φ‖
2
Ḣs =

∥∥(−∆)
s
2 (φ)

∥∥2
L2 for all φ ∈ D(Rd) .

Notice that (2.4) can be shown to hold, by approximation, also when φ ∈ D(Rd) is replaced by any

v ∈ Ḣs(Rd), where (−∆)
s
2 (v) is meant in the sense of distributions. By a further approximation

procedure one then gets

Cd,s

2

∫

Rd

∫

Rd

(v(x)− v(y))(w(x) − w(y))

|x− y|d+2s
dxdy=

∫

Rd

(−∆)
s
2 (v)(x) (−∆)

s
2 (w)(x) dx ∀v,w ∈ Ḣs(Rd) .

(2.5)

If we set v = w in (2.5) we deduce that ‖v‖2Ḣs =
∥∥(−∆)

s
2 (v)

∥∥2
L2 also for any v ∈ Ḣs(Rd). In Sections

4 and 5 (and in Appendix B) we shall deal with functions which belong to Ḣs(Rd) and to weighted
Lebesgue spaces.
Riesz potentials. Another mathematical object deeply linked with the s-Laplacian is its Riesz
kernel, namely the function

I2s(x) :=
kd,s

|x|d−2s
,

where kd,s is again a positive constant depending only on d and s. For a given (possibly signed)
finite Radon measure ν, one can show that the convolution

Uν := I2s ∗ ν

yields an L1
loc(R

d) function referred to as the Riesz potential of ν, which formally satisfies

(−∆)s(Uν) = ν .

That is, still at a formal level, the convolution against I2s coincides with the operator (−∆)−s.
One of the most important and classical references for Riesz potentials is the monograph [28] by N.
S. Landkof. In the proof of Theorem 3.2 and throughout Section 5 we shall exploit some crucial
properties of Riesz potentials collected in [28], along with their connections with the s-Laplacian.

3. Statements of the main results

We start by introducing a suitable notion of weak solution to (1.1), in the spirit of [18] and [38].

Definition 3.1. Given a finite positive finite Radon measure µ, by a weak solution to problem (1.1)
we mean a nonnegative function u such that

u ∈ L∞((0,∞);L1
ρ(R

d)) ∩ L∞(Rd × (τ,∞)) ∀τ > 0 , (3.1)

u ∈ L2
loc((0,∞); Ḣs(Rd)) , (3.2)

−

∫ ∞

0

∫

Rd

u(x, t)ϕt(x, t) ρ(x)dxdt +

∫ ∞

0

∫

Rd

(−∆)
s
2 (um)(x, t) (−∆)

s
2 (ϕ)(x, t) dxdt = 0 (3.3)

∀ϕ ∈ C∞
c (Rd × (0,∞))

and

ess lim
t→0

ρ(·)u(·, t) = µ in σ(M(Rd), Cb(R
d)) . (3.4)

Our first result concerns existence.
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Theorem 3.2. Let d > 2s and assume that ρ satisfies (1.2) for some γ ∈ [0, 2s) ∩ [0, d − 2s] and
γ0 ∈ [0, γ]. Let µ be a positive finite Radon measure. Then there exists a weak solution u to (1.1)
according to Definition 3.1, which conserves the mass in the sense that µ

(
R

d
)
=
∫
Rd u(x, t)ρ(x)dx

for all t > 0, and satisfies the smoothing effect

‖u(t)‖∞ ≤ K t−α µ(Rd)β ∀t > 0 , (3.5)

where K depends only on m, γ, s, d and on the constant C appearing in (1.2), and

α :=
d− γ

(m− 1)(d− γ) + 2s− γ
, β :=

2s− γ

(m− 1)(d− γ) + 2s− γ
.

In particular, u(·, t) ∈ Lp
ρ(R

d) for all t > 0 and p ∈ [1,∞]. In addition, the solution satisfies the
energy estimates
∫ t2

t1

∫

Rd

∣∣(−∆)
s
2 (um) (x, t)

∣∣2 dxdt+ 1

m+ 1

∫

Rd

um+1(x, t2) ρ(x)dx =
1

m+ 1

∫

Rd

um+1(x, t1) ρ(x)dx

(3.6)
and ∫ t2

t1

∫

Rd

|zt(x, t)|
2
ρ(x)dxdt ≤ C′

∫

Rd

um+1 (x, t1/2) ρ(x)dx (3.7)

for all t2 > t1 > 0, where z := u
m+1

2 and C′ depends on m, t1 and t2.

The method of proof of Theorem 3.2 allows us to prove the following result on existence and
uniqueness of the initial trace, in the spirit of [5, Section 7] and [3].

Theorem 3.3. Let d > 2s and assume that ρ satisfies (1.2) for some γ ∈ [0, 2s) ∩ [0, d − 2s] and
γ0 ∈ [0, γ]. Consider a weak solution u to ρ(x)ut + (−∆)s (um) = 0 in the sense that u satisfies
(3.1), (3.2) and (3.3). Then there exists a unique positive finite Radon measure µ which is the initial
trace of u in the sense of (3.4). The same result holds if the condition u ∈ L∞(Rd × (τ,∞)) in

(3.1) is replaced by the weaker condition
∫ t2
t1
um(·, τ) dτ ∈ L1

ρ(R
d) for all t2 > t1 > 0. In particular,

µ
(
R

d
)
=
∫
Rd u(x, t)ρ(x)dx for all t > 0.

As for uniqueness of weak solutions we have the next result.

Theorem 3.4. Let d > 2s and assume that ρ satisfies (1.2) for some γ ∈ [0, 2s) ∩ [0, d − 2s] and
γ0 ∈ [0, γ]. Let u1, u2 be two weak solutions to (1.1) in the sense of Definition 3.1. Suppose that
they take as initial datum the same positive finite Radon measure µ, in the sense of (3.4). Then
u1 = u2.

Remark 3.5. Notice that, if d ≥ 4s, then the assumptions on γ reduce to γ ∈ [0, 2s).

Let us stress that, in order to prove Theorem 3.4, we shall crucially exploit the properties of the
operator A = ρ−1 (−∆)s contained in Theorem 3.7 and Proposition B.1 below. Such results are of
independent interest; their proofs will be just sketched, to keep the paper in a reasonable length, in
Appendix B. Some further details and extentions are given in [31].

Definition 3.6. Let d > 2s and assume that ρ satisfies (1.2) for some γ ∈ [0, 2s) and γ0 ∈ [0, d). We
denote as Xs,ρ the Hilbert space of all functions v ∈ L2

ρ(R
d) such that (−∆)s(v) (as a distribution)

belongs to L2
ρ−1(Rd), equipped with the norm

‖v‖2Xs,ρ
:= ‖v‖22,ρ + ‖(−∆)s(v)‖22,ρ−1 ∀v ∈ Xs,ρ .

Theorem 3.7. Let d > 2s and assume that ρ satisfies (1.2) for some γ ∈ [0, 2s) and γ0 ∈ [0, d).
Let A : D(A) := Xs,ρ ⊂ L2

ρ(R
d) → L2

ρ(R
d) be the operator

A(v) := ρ−1 (−∆)s(v) ∀v ∈ Xs,ρ .
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Then A is densely defined, positive and self-adjoint on L2
ρ(R

d), and the quadratic form associated to
it is

Q(v, v) :=
Cd,s

2

∫

Rd

∫

Rd

(v(x) − v(y))2

|x− y|d+2s
dxdy

with domain D(Q) := L2
ρ(R

d)∩Ḣs(Rd). Moreover, Q is a Dirichlet form on L2
ρ(R

d) and A generates

a Markov semigroup S2(t) on L2
ρ(R

d). In particular, for all p ∈ [1,∞] there exists a contraction

semigroup Sp(t) on Lp
ρ(R

d), consistent with S2(t) on L2
ρ(R

d)∩Lp
ρ(R

d), which is furthermore analytic
with a suitable angle θp > 0 for p ∈ (1,∞).

4. Existence of weak solutions

We start showing a direct consequence of Definition 3.1, namely the conservation in time of the
“mass”

∫
Rd u(x, t) ρ(x)dx (recall that we are considering nonnegative solutions).

Proposition 4.1. Let d > 2s and assume that ρ satisfies (1.2) for some γ ∈ [0, 2s)∩ [0, d− 2s] and
γ0 ∈ [0, γ]. Let u be a weak solution to (1.1) according to Definition 3.1. Then

‖u(t)‖1,ρ =

∫

Rd

u(x, t) ρ(x)dx = µ(Rd) for a.e. t > 0 , (4.1)

namely we have conservation of mass.

Proof. We plug into (3.3) the test function ϕR(x, t) := ϑ(t)ξR(x), where ξR is the same cut-off func-
tion as in Lemma A.3 and ϑ is a suitable positive, regular and compactly supported approximation
of χ[t1,t2] (let t2 > t1 > 0). Using (2.5), Lemma A.1, Lemma A.3 and letting ϑ → χ[t1,t2] in (3.3), it
is straightforward to obtain the following estimate:∣∣∣∣

∫

Rd

u(x, t2)ξR(x) ρ(x)dx −

∫

Rd

u(x, t1)ξR(x) ρ(x)dx

∣∣∣∣

≤c−1

(
1

R2s
+

1

R2s−γ

)
‖(1 + |x|γ)(−∆)s(ξ)‖∞

∫ t2

t1

∫

Rd

um(x, t) ρ(x)dxdt ,

(4.2)

where on the r.h.s. we exploited the inequality ρ−1(x) ≤ c−1 (1 + |x|γ) for all x ∈ R
d, direct conse-

quence of (1.2). Letting R → ∞ in (4.2) and recalling (3.4) we get the conclusion. �

The proof of existence of weak solutions to (1.1) is based on an approximation procedure, that
is on picking a sequence of initial data in L1

ρ(R
d) ∩ L∞(Rd) which suitably converges to µ. An

additional approximation will be needed to deal with the possible singularity of the weight at the
origin. The corresponding approximate problems are addressed in the next subsection. Since the
procedure is in principle standard although technically delicate, we underline the main points only.

4.1. Approximate problems with initial data in L1
ρ(R

d) ∩ L∞(Rd). We are concerned with
existence of solutions to the following problem:

{
ρ(x)ut + (−∆)s (um) = 0 in R

d × R
+ ,

u = u0 on R
d × {0} .

(4.3)

Such solutions are meant in the sense of Definition 3.1 with µ replaced by ρu0.

Lemma 4.2. Let d > 2s and assume that ρ satisfies (1.2) for some γ ∈ [0, 2s) ∩ [0, d − 2s] and
γ0 ∈ [0, γ]. Let u0 ∈ L1

ρ(R
d) ∩ L∞(Rd), with u0 ≥ 0. Then there exists a weak solution u to (4.3)

which satisfies the energy estimates (3.6), (3.7) with a constant C′ depending only on m, t1 and t2.

Let us outline the strategy of the proof. We further approximate the problem (4.3) by regularizing
the weight ρ(x) in a neighbourhood of x = 0 (where it can be singular). More precisely, we introduce
for any η > 0 the following problem:

{
ρη(x) (uη)t + (−∆)s

(
umη
)
= 0 in R

d × R
+ ,

uη = u0 on R
d × {0} ,

(4.4)
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where {ρη} ⊂ C(Rd) is a family of strictly positive weights which behave like |x|−γ at infinity
and approximate ρ(x) monotonically from below, as η → 0. Existence (and uniqueness) of weak
solutions to (4.4) for such weights and initial data have been established in [38, Theorem 3.1]. We
get suitable a priori estimates (namely (3.6) applied to uη, which will be proved later, and (4.7)
below), that enable us to pass to the limit as η → 0, and obtain a solution to problem (4.3), by
standard compactness arguments.

Proof. For any η > 0 let uη be the unique solution to problem (4.4). Such solutions belong to
C([0,∞);L1

ρη
(Rd)) and satisfy the bound ‖uη‖L∞(Rd×(0,∞)) ≤ ‖u0‖L∞(Rd) . Exploiting these proper-

ties one can show that each uη satisfies a weak formulation which is slightly stronger than the one
of Definition 3.1:

−

∫ T

0

∫

Rd

uη(x, t)ϕt(x, t) ρη(x)dxdt +

∫ T

0

∫

Rd

(−∆)
s
2 (umη )(x, t) (−∆)

s
2 (ϕ)(x, t) dxdt

=

∫

Rd

u0(x)ϕ(x, 0) ρη(x)dx

(4.5)

for all T > 0 and ϕ ∈ C∞
c (Rd × [0, T )) (so that ϕ(·, T ) = 0), where umη ∈ L2((0,∞); Ḣs(Rd)).

The latter property follows from the validity of the energy identity (3.6) for uη for all t2 > t1 ≥ 0.
Formally, (3.6) can be proved by plugging the test function ϕ(x, t) := ϑ(t)umη (x, t) into the weak
formulation (4.5) and letting ϑ tend to χ[t1,t2] as in the proof of Proposition 4.1. In order to justify
rigorously the validity of (3.6) for uη, one must proceed as in [18, Section 8]. A crucial point concerns
the fact that our solutions are strong, which follows by techniques analogous to the ones used in [18,
Section 8.1]. We refer the reader to Section 4.5 below for more details. We have:

∫ t2

t1

∫

Rd

|(zη)t(x, t)|
2
ρη(x)dxdt ≤ C

∫

Rd

um+1
η (x, t1/2) ρ(x)dx ∀t2 > t1 > 0 , (4.6)

where zη := u
m+1

2
η and C depends only on m, t1 and t2. Formula (4.6) follows as in [18, Lemma 8.1].

Since
(
umη
)
t
= cm z

m−1

m+1

η (zη)t and ‖zη‖L∞(Rd×(0,∞)) = ‖uη‖
m+1

2

L∞(Rd×(0,∞))
≤ ‖u0‖

m+1

2

L∞(Rd)
,

from (4.6) we deduce that
∫ t2

t1

∫

Rd

∣∣∣
(
umη
)
t
(x, t)

∣∣∣
2

ρη(x)dxdt ≤ k ‖u0‖
m−1
∞ ∀t2 > t1 > 0 (4.7)

for a suitable k > 0 independent of η. Moreover, the validity of
∫ t2
t1

∫
Rd

∣∣umη (x, t)
∣∣2 ρη(x)dxdt ≤ C′′

for all t2 > t1 ≥ 0 and for another suitable positive constant C′′ that depends only on m, t1, t2
and u0 is ensured by the conservation of mass (4.1) (with ρ = ρη) and by the uniform bound on
‖uη‖L∞(Rd×(0,∞)). Let n ∈ N. We now use (A.4) with ξ1 = ξ1,n ∈ C∞(Rd) such that

ξ1 ≡ 1 in Bn , ξ1 ≡ 0 in B2n ,

and with ξ2 = ξ2,n ∈ C∞((0,∞)) such that

ξ2 ≡ 1 in

(
1

n
, n

)
, ξ2 ≡ 0 in

(
0,

1

2n

)
∪ (2n,∞) .

The fact that Hs(Rd+1) is compactly embedded in L2
loc(R

d+1) (see e.g. [19, Theorem 7.1]), and a
standard diagonal procedure allow us to pass to the limit as η → 0 in (4.5) and get that the weak
limit u of {uη} satisfies

−

∫ T

0

∫

Rd

u(x, t)ϕt(x, t) ρ(x)dxdt +

∫ T

0

∫

Rd

(−∆)
s
2 (um)(x, t) (−∆)

s
2 (ϕ)(x, t) dxdt

=

∫

Rd

u0(x)ϕ(x, 0) ρ(x)dx

(4.8)
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for all T > 0 and ϕ ∈ C∞
c (Rd × [0, T )). The validity of (3.4) follows by plugging into (4.8) the test

function ϕ(x, t) := ϑ(t)ξR(x), where ξR is a cut-off function as in Lemma A.3 and ϑ is a regular
approximation of χ[0,t2]. One then lets t2 → 0 and R → ∞.

The energy estimates (3.6) and (3.7) for u can be obtained reasoning exactly as above (one uses
again the fact that solutions are strong). �

4.2. Stroock-Varopoulos inequality and smoothing estimate. Having at our disposal an
existence result for problem (4.3), we can now let ρu0 approximate µ. In order to show that
the corresponding solutions converge to a solution of (1.1), we need first some technical results.
We begin with a modification of the classical Stroock-Varopoulos inequality: it is proved here
for v ∈ L∞(Rd) ∩ Ḣs(Rd) with (−∆)s(v) ∈ L1(Rd). Observe that, under the hypothesis that

v ∈ Lq(Rd) ∩ Ḣs(Rd) with (−∆)s(v) ∈ Lq(Rd), for q > 1, such an inequality can be found, e.g., in
[18, Section 5] or [4]. See also [13, formula (2.2.7)] for a similar inequality involving general Dirichlet
forms. The present result seems to be new, in view of its functional framework, therefore its proof
is given in some detail.

Lemma 4.3. Let d > 2s. For all nonnegative v ∈ L∞(Rd) ∩ Ḣs(Rd) such that (−∆)s(v) ∈ L1(Rd),
the inequality

∫

Rd

vq−1(x)(−∆)s(v)(x) dx ≥
4(q − 1)

q2

∫

Rd

∣∣∣(−∆)
s
2

(
v

q
2

)
(x)
∣∣∣
2

dx (4.9)

holds for any q > 1.

Proof. We shall assume, with no loss of generality, that v is a regular function. Indeed, by standard
mollification arguments, one can always pick a sequence {vn} ⊂ C∞(Rd) ∩ L∞(Rd) ∩ Ḣs(Rd) such
that {vn} converges pointwise to v, ‖vn‖∞ ≤ ‖v‖∞ and {(−∆)s(vn)} converges to (−∆)s(v) in
L1(Rd). This is enough to pass to the limit as n → ∞ on the l.h.s. of (4.9), while on the r.h.s. one
exploits the weak lower semi-continuity of the L2 norm.

Consider the following sequences of functions:

ψn(x) :=

∫ x∧ 1
n

0

y
4s

d−2s dy + (q − 1)

∫ x∨ 1
n

1
n

yq−2 dy ∀x ∈ R
+ ,

Ψn(x) :=

∫ x∧ 1
n

0

y
2s

d−2s dy + (q − 1)
1
2

∫ x∨ 1
n

1
n

y
q
2
−1 dy ∀x ∈ R

+ .

It is plain that ψn and Ψn are absolutely continuous, monotone increasing functions such that

ψ′
n(x) = [Ψ′

n(x)]
2

for all x ∈ R
+. For any R > 0, take a cut-off function ξR as in Lemma A.3. To the

function ξRv one can apply Lemma 5.2 of [18] with the choices ψ = ψn and Ψ = Ψn, which yields
∫

Rd

ψn(ξRv)(x) (−∆)s(ξRv)(x) dx ≥

∫

Rd

∣∣(−∆)
s
2 (Ψn(ξRv))(x)

∣∣2 dx . (4.10)

Expanding the s-Laplacian of the product of two functions, we get that the l.h.s. of (4.10) equals
∫

Rd

ψn(ξRv)(x) ξR(x)(−∆)s(v)(x) dx +

∫

Rd

ψn(ξRv)(x)(−∆)s(ξR)(x)v(x) dx

+ 2Cd,s

∫

Rd

ψn(ξRv)(x)

∫

Rd

(ξR(x) − ξR(y))(v(x) − v(y))

|x− y|d+2s
dydx .

(4.11)

By dominated convergence,

lim
R→∞

∫

Rd

ψn(ξRv)(x) ξR(x)(−∆)s(v)(x) dx =

∫

Rd

ψn(v)(x)(−∆)s(v)(x) dx .
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Our aim is to show that the other two integrals in (4.11) go to zero as R→ ∞. We have:
∣∣∣∣
∫

Rd

ψn(ξRv)(x)(−∆)s(ξR)(x)v(x) dx

∣∣∣∣

≤‖(−∆)s(ξR)‖∞

(
d− 2s

d+ 2s

∫

{v≤ 1
n
}

v
2d

d−2s (x) dx + ψn(‖v‖∞)‖v‖∞

∫

{v> 1
n
}

dx

) (4.12)

and ∣∣∣∣
∫

Rd

ψn(ξRv)(x)

∫

Rd

(ξR(x)− ξR(y))(v(x) − v(y))

|x− y|d+2s
dydx

∣∣∣∣

≤‖v‖Ḣs

(∫

Rd

[ψn(ξRv)(x)]
2
∫

Rd

(ξR(x) − ξR(y))
2

|x− y|d+2s
dydx

) 1
2

≤‖v‖Ḣs ‖ls(ξR)‖
1
2

∞

([
d− 2s

d+ 2s

]2 ∫

{v≤ 1
n
}

v2
d+2s
d−2s (x) dx+ [ψn(‖v‖∞)]

2
∫

{v> 1
n
}

dx

) 1
2

,

(4.13)

where ls is defined in Lemma A.2. Thanks to the scaling properties of both (−∆)s(ξR) and ls(ξR)
(Lemma A.3), it is immediate to check that limR→∞ ‖(−∆)s(ξR)‖∞ = limR→∞ ‖ls(ξR)‖∞ = 0.

Moreover, notice that v ∈ L
2d

d−2s (Rd) ∩ L∞(Rd) (see [19, Section 6] or Lemma 4.4 below). In

particular, v also belongs to L2 d+2s
d−2s (Rd). Thus, letting R → ∞ in (4.12) and (4.13), we deduce that

the last two integrals in (4.11) vanish, so that we can pass to the limit on the l.h.s. of (4.10). On
the r.h.s. we just use the fact that (−∆)

s
2 (Ψn(ξRv)) converges to (−∆)

s
2 (Ψn(v)) weakly in L2(Rd).

This proves the validity of
∫

Rd

ψn(v)(x)(−∆)s(v)(x) dx ≥

∫

Rd

∣∣(−∆)
s
2 (Ψn(v))(x)

∣∣2 dx . (4.14)

The final step is to let n → ∞ in (4.14). It is clear that the sequence {ψn(x)} converges locally

uniformly to the function xq−1, while {Ψn(x)} converges locally uniformly to 2(q−1)
1
2 x

q
2 /q. Hence,

{ψn(v)} and {Ψn(v)} converge in L∞(Rd) to vq−1 and 2(q − 1)
1
2 v

q
2 /q, respectively. This is enough

in order to pass to the limit in (4.14) and obtain (4.9). �

Lemma 4.4. Let d > 2s and assume that ρ satisfies (1.2) for some γ ∈ [0, 2s) ∩ [0, d − 2s] and
γ0 ∈ [0, γ]. There exists a positive constant CCKN = CCKN (C, γ, s, d) such that the Caffarelli-Kohn-
Nirenberg-type inequalities

‖v‖q,ρ ≤ CCKN

∥∥(−∆)
s
2 (v)

∥∥ 1
α+1

2
‖v‖

α
α+1

p,ρ ∀v ∈ Lp
ρ(R

d) ∩ Ḣs(Rd)

hold for any α ≥ 0, p ≥ 1 and q = 2(d− γ)(α+ 1)/
[
(d− γ)αp + d− 2s

]
.

Proof. See e.g. [12, Theorem 1.8], where one considers the Sobolev inequality corresponding to α = 0
here, and then uses an elementary interpolation. �

Lemmas 4.3 and 4.4 provide us with some functional inequalities which are crucial to prove the
following smoothing effect for solutions to (4.3).

Proposition 4.5. Let d > 2s and assume that ρ satisfies (1.2) for some γ ∈ [0, 2s) ∩ [0, d − 2s]
and γ0 ∈ [0, γ]. There exists a constant K > 0 depending only on m, γ, s, d and C such that, for
all nonnegative initial datum u0 ∈ L1

ρ(R
d)∩L∞(Rd) and the corresponding weak solution u to (4.3)

constructed in Lemma 4.2, the following Lp0
ρ –L∞ smoothing effect holds for any p0 ∈ [1,∞):

‖u(t)‖∞ ≤ K t−α0 ‖u0‖
β0

p0,ρ
∀t > 0 , (4.15)

where

α0 :=
d− γ

(m− 1)(d− γ) + (2s− γ)p0
, β0 :=

(2s− γ)p0
(m− 1)(d− γ) + (2s− γ)p0

. (4.16)
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Proof. We omit the details, since the claim follows as in [18, Theorem 8.2] by means of a standard
parabolic Moser iteration. Nevertheless, notice that the proof relies on the Stroock-Varopoulos
inequality (which has to hold for the precise set of functions stated in Lemma 4.3), the Caffarelli-
Kohn-Nirenberg type inequalities provided by Lemma 4.4 and the fact that the Lp

ρ norms do not
increase along the evolution (see Section 4.5). �

4.3. Proof of the existence result. We outline the main steps of this proof. Suppose first that µ
is compactly supported. Consider the family {uε} of weak solutions to (1.1) that take on the regular
initial data µε := ψε ∗ µ (let ε > 0), where ψε := 1

εd
ψ
(
x
ε

)
with ψ ∈ D+(R

d) and ‖ψ‖1 = 1. The

existence of such family is ensured by Lemma 4.2, upon setting u0 = ρ−1µε. In view of certain a priori
estimates (see (4.17), (4.18) and (4.19) below), we prove that {uε} converges (up to subsequences),
as ε → 0, to a function u which satisfies (3.1), (3.2) and (3.3). Afterwards we deal with (3.4). To
do this, we exploit some results in potential theory, following [34] or [42], using the Riesz potential
Uε(·, t) of ρ(·)uε(·, t). Then we let ε→ 0; in doing this, a uniform estimate w.r.t. ε for the potentials
(see (4.25) below) will be crucial. Finally, we consider general positive finite Radon measures µ, by
a further approximation.

Proof of Theorem 3.2. For any ε > 0, let uε be as above. Combining the smoothing effect (4.15)
with the fact that ‖µε‖1 = µ(Rd) and with the conservation of mass (4.1), we obtain:

∫

Rd

um+1
ε (x, t) ρ(x)dx ≤ ‖uε(t)‖

m
∞ ‖µε‖1 ≤ Km t−αm µ(Rd)1+βm (4.17)

for all t > 0. Hence, using (3.6), (3.7) and (4.17) we get:

∫ t2

t1

∫

Rd

∣∣(−∆)
s
2 (umε ) (x, t)

∣∣2 dxdt+
∫

Rd

um+1
ε (x, t2) ρ(x)dx ≤ Km t−αm

1 µ(Rd)1+βm , (4.18)

∫ t2

t1

∫

Rd

|(zε)t (x, t)|
2
ρ(x)dxdt ≤ C′

∫

Rd

um+1 (x, t1/2) ρ(x)dx (4.19)

for all t2 > t1 > 0, where zε := u
m+1

2
ε and C′ is a positive constant that depends on m, t1, t2 but

is independent of ε. Thanks to (4.18), (4.19), the conservation of mass and the smoothing effect
(which, in particular, bounds {uε} in L∞(Rd × (τ,∞)) for all τ > 0 independently of ε), we are
allowed to proceed exactly as in the proof of Lemma 4.2. That is, we obtain that the pointwise limit
u of {uε}, up to subsequences, satisfies (3.1), (3.2) and (3.3).

Let us now introduce the Riesz potential Uε(·, t) of ρ(·)uε(·, t). The equation solved by uε is

ρ(x)(uε)t(x, t) = − (−∆)
s
(umε )(x, t) ∀(x, t) ∈ R

d × R
+. (4.20)

Applying to both sides of (4.20) the operator (−∆)−s, namely the convolution against the Riesz
kernel I2s (recall the discussion in Section 2), formally yields

(Uε)t (x, t) = −umε (x, t) ∀(x, t) ∈ R
d × R

+ . (4.21)

To prove rigorously (4.21), we plug into (3.3) (with u = uε) the test function ϕ(y, t) := ϑ(t)φ(y),
where ϑ is a smooth and compactly supported approximation of χ[t1,t2] and φ ∈ D(Rd). Integrating

by parts (in space), letting ϑ tend to χ[t1,t2] and replacing the function φ(y) by φ(y+x), with x ∈ R
d

fixed, we get:
∫

Rd

uε(y, t2)φ(y + x) ρ(y)dy −

∫

Rd

uε(y, t1)φ(y + x) ρ(y)dy

=−

∫

Rd

(∫ t2

t1

umε (y, t) dt

)
(−∆)s(φ)(y + x) dy .

(4.22)
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Integrating (4.22) against the Riesz kernel I2s(x) and using Fubini’s Theorem gives (let z = y + x)
∫

Rd

Uε(z, t2)φ(z) dz −

∫

Rd

Uε(z, t1)φ(z) dz

=−

∫

Rd

(∫ t2

t1

umε (y, t) dt

)(∫

Rd

(−∆)s(φ)(y + x)I2s(x) dx

)
dy = −

∫

Rd

(∫ t2

t1

umε (y, t) dt

)
φ(y) dy .

(4.23)
The applicability of Fubini’s Theorem is justified thanks to Lemma A.5, Lemma A.1 (recall that

d− 2s ≥ γ by assumption) and to the fact that
∫ t2
t1
umε (·, t) dt belongs to L1

ρ(R
d)∩L∞(Rd) by (3.1).

By Lemma 4.2 and Definition 3.1, we know that ρuε(t) converges to µε in σ(M(Rd), Cb(R
d)) as

t→ 0. Hence, letting t1 → 0 in (4.23), we find that
∫

Rd

Uε(x, t2)φ(x) dx −

∫

Rd

Uµε(x)φ(x) dx = −

∫

Rd

(∫ t2

0

umε (x, t) dt

)
φ(x) dx (4.24)

for all t2 > 0 and φ ∈ D(Rd). In fact,
∫

Rd

Uε(x, t1)φ(x) dx =

∫

Rd

(∫

Rd

I2s(x− y) ρ(y)uε(y, t1) dy

)
φ(x) dx

=

∫

Rd

(∫

Rd

I2s(y − x)φ(x) dx

)

︸ ︷︷ ︸
Uφ(y)

ρ(y)uε(y, t1) dy ,

and in view of Lemma A.5 we know that, in particular, Uφ ∈ C0(R
d), which allows to pass to the

limit in the integral as t1 → 0. Thanks to the smoothing effect, the conservation of mass and the
hypotheses on ρ, we can provide the following bound for (4.24):
∣∣∣∣
∫

Rd

Uε(x, t2)φ(x) dx −

∫

Rd

Uµε(x)φ(x) dx

∣∣∣∣ ≤
∥∥ρ−1φ

∥∥
∞
Km−1 µ(Rd)1+β(m−1)

∫ t2

0

t−α(m−1)dt .

(4.25)
Note that the time integral in the r.h.s. is finite since α(m − 1) < 1 (recall (4.16) for p0 = 1). We
proved above that {uε} converges pointwise a.e. (up to subsequences) to a function u which satisfies
(3.1), (3.2) and (3.3). If we exploit once again the smoothing effect and the conservation of mass,
we easily infer that such convergence also takes place in σ(M(Rd), C0(R

d)):

lim
ε→0

ρuε(t) = ρu(t) in σ(M(Rd), C0(R
d)) , for a.e. t > 0 . (4.26)

Using (4.26), the fact that µε → µ in σ(M(Rd), Cb(R
d)) and proceeding exactly as we did in the

proof of (4.24), we can let ε→ 0 in (4.25) to get
∣∣∣∣
∫

Rd

U(x, t2)φ(x) dx −

∫

Rd

Uµ(x)φ(x) dx

∣∣∣∣ ≤
∥∥ρ−1φ

∥∥
∞
Km−1 µ(Rd)1+β(m−1)

∫ t2

0

t−α(m−1)dt

(4.27)
for a.e. t2 > 0 and φ ∈ D(Rd), where we denote as U the potential of ρu. Note that, passing to the
limit in (4.24) for any nonnegative φ ∈ D(Rd), we deduce in particular that U(x, t) is nonincreasing
in t. Moreover, (4.27) implies that U(t) converges to Uµ in L1

loc(R
d), whence

lim
t→0

U(x, t) = Uµ(x) for a.e. x ∈ R
d . (4.28)

Letting ε → 0 in the conservation of mass (4.1) (applied to u = uε and µ = µε), by means e.g. of
Fatou’s Lemma we obtain

‖u(t)‖1,ρ ≤ µ(Rd) for a.e. t > 0 . (4.29)

Due to the compactness results recalled in Section 2, from (4.29) we infer that (almost) every
sequence tn → 0 admits a subsequence {tnk

} such that {ρu(tnk
)} converges to a certain positive

finite Radon measure ν in σ(M(Rd), Cc(R
d)). Thanks to (4.28) and [28, Theorem 3.8] we have that

Uν(x) = Uµ(x) almost everywhere. Alternatively, such identity can be proved by passing to the limit
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in
∫
Rd U(x, tnk

)φ(x) dx, recalling that U(tnk
) → Uµ in L1

loc(R
d) as k → ∞. Theorem 1.12 of [28]

then ensures that two positive finite Radon measures whose potentials are equal almost everywhere
must coincide. Hence, ν = µ and the limit measure does not depend on the particular subsequence,
so that

lim
t→0

ρu(t) = µ in σ(M(Rd), Cc(R
d)) .

In order to show that convergence also takes place in σ(M(Rd), Cb(R
d)), it is enough to establish

that

lim
t→0

‖u(t)‖1,ρ = µ(Rd) . (4.30)

Since ρu(t) converges to µ in σ(M(Rd), Cc(R
d)) as t→ 0, we know that

µ(Rd) ≤ lim inf
t→0

‖u(t)‖1,ρ , (4.31)

see again Section 2. But (4.31) and (4.29) entail (4.30).
Finally, the validity of the smoothing estimate (3.5) is just a consequence of passing to the limit

in (4.15) (applied to uε and p0 = 1) as ε→ 0 (recall that {uε} converges pointwise to u).
At the beginning of the proof we required µ to be compactly supported. Otherwise, take a

sequence of compactly supported measures {µn} converging to µ in σ(M(Rd), Cb(R
d)) and consider

the corresponding sequence of solutions {un} to (1.1). Estimates (4.18) and (4.19), as well as the
conservation of mass and the smoothing effect, are clearly stable as ε→ 0, thus they also hold upon
replacing uε with un and µε with µn. Hence, using the same techniques as above, one proves that
{un} converges to a solution u of (1.1) starting from µ. �

4.4. Existence and uniqueness of initial traces. In order to prove Theorem 3.3, we need the
next preliminary result.

Lemma 4.6. Let ν be a signed finite Radon measure such that Uν ≥ 0 almost everywhere. Then
ν(Rd) ≥ 0.

Proof. From the assumptions on Uν and thanks to Fubini’s Theorem, there holds
∫

Rd

χBn
(y)Uν(y) dy =

∫

Rd

(I2s ∗ χBn
) (x) dν = kd,s

∫

Rd

(∫

Bn

|x− y|−d+2s dy

)
dν ≥ 0 ∀n ∈ N .

(4.32)
Performing the change of variable z = y/n, the last inequality in (4.32) reads

∫

Rd

(∫

B1

|x/n− z|−d+2s dz

)
dν ≥ 0 ∀n ∈ N . (4.33)

It is plain that for every x ∈ R
d the sequence {

∫
B1

|x/n − z|−d+2s dz} converges to the positive

constant
∫
B1

|z|−d+2s dz and it is dominated by the latter. Passing to the limit as n→ ∞ in (4.33),

we get the assertion by dominated convergence (recall that ν is finite). �

Proof of Theorem 3.3. Consider a function u satisfying (3.1), (3.2) and (3.3). Monotonicity in time
of the associated potential is proved as we did after (4.21): notice that, for such an argument to work,
the running assumptions on γ are required. The same proof holds if, instead of u ∈ L∞(Rd×(τ,∞)),

u is only supposed to satisfy
∫ t2
t1
um(·, τ) dτ ∈ L1

ρ(R
d) for all t2 > t1 > 0. Existence of an initial

trace µ, meant as convergence in σ(M(Rd), Cc(R
d)) along subsequences of a given sequence of

times tending to t = 0, follows by compactness, since we are assuming that solutions belong to
L∞((0,∞);L1

ρ(R
d)). Uniqueness of such a trace is established proceeding as we did after (4.28),

using the monotonicity of potentials and the results of [28].
We are left with proving that convergence to µ takes places also in σ(M(Rd), Cb(R

d)), namely
that ess limt→0

∫
Rd u(x, t) ρ(x)dx = µ(Rd). By weak∗ lower semi-continuity, it is then enough to

show that ess lim supt→0

∫
Rd u(x, t) ρ(x)dx ≤ µ(Rd). Let U(·, t) be the potential of {ρ(·)u(·, t)}.

Again, the monotonicity in time of U(·, t) and the first part of the proof ensure that Uµ−U(·, t) ≥ 0
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almost everywhere. Therefore, Lemma 4.6 applied to the signed finite Radon measure dν = dµ −
u(x, t)ρ(x)dx entails µ(Rd) ≥

∫
Rd u(x, t) ρ(x)dx. Letting t→ 0 concludes the proof.

�

4.5. Strong solutions and decrease of the norms. In order to justify rigorously some of the
above computations, it is essential to show that the weak solutions constructed in Lemma 4.2 are
strong. By a “strong solution”, following [18, Section 6.2], we mean a weak solution u such that
ut ∈ L∞((τ,∞), L1

ρ(R
d)) for all τ > 0. The fact that our solutions are indeed strong can be proved

as in [18, Section 8.1]. The first step consists in showing that ρ(·)ut(·, t) is a finite Radon measure
which satisfies the estimate

‖ρ ut(t)‖M(Rd) ≤
2 ‖u0‖1,ρ
(m− 1)t

∀t > 0 , (4.34)

where now, by M(Rd) we mean the Banach space of signed finite Radon measures on R
d, equipped

with the usual norm of the variation. As in [43, Lemma 8.5], this follows by using the inequality
∫

Rd

[u(x, t)− ũ(x, t)]+ ρ(x)dx ≤

∫

Rd

[u0(x)− ũ0(x)]+ ρ(x)dx ∀t > 0 , (4.35)

where u and ũ are the solutions to (4.3) constructed in Lemma 4.2 corresponding to the initial data
u0 and ũ0, respectively. Such inequality does hold for the approximate solutions uη and ũη used in
the proof of Lemma 4.2 (see [38, Proposition 3.4]), whence (4.35) follows by passing to the limit.

Afterwards, as [18, Lemma 8.1], one proves that z := u
m+1

2 fulfills (3.7). In particular,

zt ∈ L2
loc((0,∞);L2

ρ(R
d)) . (4.36)

Thanks to (4.34) and (4.36), the abstract result contained in [6, Theorem 1.1] ensures that ut ∈
L1
loc((0,∞);L1

ρ(R
d)). In particular, (4.34) holds with ‖ρ ut(t)‖M(Rd) replaced by ‖ut(t)‖1,ρ, whence

the assertion.

An important consequence of the fact that the solutions constructed in Lemma 4.2 are strong is
the decrease of their Lp

ρ norms for any p ∈ [1,∞]. Indeed, by definition of strong solution, for any

p ∈ (1,∞), we are allowed to multiply the differential equation in (4.3) by up−1 and integrate in
R

d × [t1, t2]. By Stroock-Varopoulos inequality (4.9) (let v = um and q = (p+m− 1)/m), we get
∫

Rd

up(x, t2) ρ(x)dx−

∫

Rd

up(x, t1) ρ(x)dx = −p

∫ t2

t1

∫

Rd

up−1(x, t)(−∆)s(um)(x, t) dxdt ≤ 0 (4.37)

for all t2 > t1 > 0. The validity of (4.37) down to t1 = 0 follows by using the approximate
solutions {uη} from the proof of Lemma 4.2 and letting η → 0. The case p = ∞ can be handled by
approximation.

5. Uniqueness of weak solutions

Prior to the proof of Theorem 3.4, we need some technical lemmas. Hereafter, by “weak solution”
to (1.1), we shall mean a solution in the sense of Definition 3.1.

Lemma 5.1. Let d > 2s and assume that ρ satisfies (1.2) for some γ ∈ [0, 2s) ∩ [0, d − 2s] and
γ0 ∈ [0, γ]. Let u be a weak solution to (1.1). Then the potential U(·, t) of ρ(·)u(·, t) admits an
absolutely continuous version (in L1

loc(R
d)) which is nonincreasing in t.

Proof. One proceeds as in the first part of the proof of Theorem 3.2, using the same techniques we
exploited to prove (4.21) rigorously. �

Lemma 5.2. Let d > 2s and assume that ρ satisfies (1.2) for some γ ∈ [0, 2s) ∩ [0, d − 2s] and
γ0 ∈ [0, γ]. Let u be a weak solution to (1.1), taking the initial datum µ whose potential is Uµ. Then
there holds

lim
t↓0

U(x, t) = Uµ(x) ∀x ∈ R
d . (5.1)
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Proof. It is a direct application of Theorem 3.9 of [28] but, for the reader’s convenience, we give
some details.

Thanks to Theorem 3.8 of [28] and to the monotonicity ensured by Lemma 5.1, we have that
the limit in (5.1) is taken at least for a.e. x ∈ R

d. However, for what follows it will be crucial
to prove that it is taken for every x ∈ R

d. To this end we make use again of the monotonicity
property provided by Lemma 5.1. In fact, Lemma 1.12 of [28] shows that, as a consequence of the
monotonicity of potentials, there exists a positive finite Radon measure ν, whose potential is denoted
by Uν , and a constant A ≥ 0 such that

lim
t↓0

U(x, t) = Uν(x) +A ∀x ∈ R
d .

Since (5.1) holds almost everywhere,

Uµ(x) = Uν(x) +A for a.e. x ∈ R
d . (5.2)

But using the corollary at page 129 of [28], from (5.2) we deduce that necessarily A = 0. Hence,
(5.2) implies that Uν = Uµ almost everywhere, and from Theorem 1.12 of [28] we know that two
potentials coinciding a.e. in fact coincide everywhere, whence (5.1) follows. �

5.1. Main ideas in the proof of uniqueness. Since the proof of Theorem 3.4 is rather delicate,
we point out its main ingredients. We should note that from a general viewpoint it is based on a
“duality method”, and in particular it is modeled on the uniqueness proof given by M. Pierre in [34].
We comment again that our uniqueness result seems to be new even if s = 1, in the weighted case,
or if ρ ≡ 1 when s ∈ (0, 1).

Let u1 and u2 be two weak solutions to (1.1) such that they both take a common positive, finite
Radon measure µ as initial datum. We denote as U1(·, t) and U2(·, t) the potentials of ρ(·)u1(·, t)
and ρ(·)u2(·, t), respectively. Fix once for all the parameters h, T > 0 and consider the function

g(x, t) := U2(x, t + h)− U1(x, t) ∀(x, t) ∈ R
d × (0, T ] . (5.3)

Proceeding again as in the proof of Theorem 3.2 (under the hypothesis γ ≤ d− 2s, see the proof of
(4.21)), we get that g(·, t) is an absolutely continuous curve (for instance in L1

loc(R
d)) satisfying

ρ(x)gt(x, t) = ρ(x) (um1 (x, t) − um2 (x, t + h)) = −a(x, t)(−∆)s(g)(x, t) (5.4)

for a.e. (x, t) ∈ R
d × (0, T ), where we define the function a as

a(x, t) :=

{
um
1 (x,t)−um

2 (x,t+h)
u1(x,t)−u2(x,t+h) if u1(x, t) 6= u2(x, t+ h) ,

0 if u1(x, t) = u2(x, t+ h) ,
(5.5)

and we used the fact that, thanks to the properties of Riesz potentials,

(−∆)s(g)(x, t) = ρ(x)u2(x, t+ h)− ρ(x)u1(x, t) .

Note that, since m > 1 and u1, u2 ∈ L∞(Rd × (τ,∞)) for all τ > 0, a is a nonnegative function
belonging to L∞(Rd × (τ,∞)) for all τ > 0.

Hence g is a solution to the linear fractional equation (5.4). Moreover, by Lemmas 5.1 and 5.2,
g(x, 0) ≤ 0 for a.e. x ∈ R

d. If we could apply the maximum principle, then we would get g ≤ 0
in R

d × (0,∞). This would imply u1 ≤ u2 and, by interchanging the roles of u1 and u2, u1 = u2.
However, a priori a maximum principle is not available for solutions to (5.4). We then consider the
“dual” problem {

ρ(x)ϕt = (−∆)s(aϕ) in R
d × (0, T ) ,

ϕ(x, T ) = ψ(x) on R
d × {T } ,

for any ψ ∈ D+(R
d). Suppose for a moment that it admits a unique smooth solution ϕ. Multiplying

(5.4) by ϕ and integrating by parts we formally obtain
∫

Rd

g(x, T )ρ(x)ψ(x) dx =

∫

Rd

ϕ(x, 0)g(x, 0) dx. (5.6)
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The conclusion would again follow should a maximum principle for (5.6) hold, and in order to justify
rigorously its applicability a further approximation is necessary. In fact, for every n ∈ N and ε > 0,
we consider a family {ψn,ε} which solves, in a sense that will be clarified later, the problem

{
ρ(x) (ψn,ε)t = (−∆)s [(an + ε)ψn,ε] in R

d × (0, T ) ,

ψn,ε = ψ on R
d × {T } ,

(5.7)

where ψ ∈ D+(R
d). The sequence {an} is a suitable approximation of the function a defined in

(5.5). In particular we suppose that, for every n ∈ N, an(x, t) is a piecewise constant function of t
(regular in x) on the time intervals (T − (k + 1)T/n, T − kT/n], for any k ∈ {0, . . . , n− 1}. Thanks
to Theorem 3.7 and to Proposition B.1 below, we are then able to treat problem (5.7) by means of
standard semigroup theory. Here the Markov property for the linear semigroup associated to the
operator A = ρ−1(−∆)s will have a crucial role. Let us mention that in [34, Theorem 1], where
s = 1, ρ ≡ 1, in view of standard parabolic theory it was not necessary to approximate the function
a by a piecewise constant function of t. Using the family {ψn,ε} and passing to the limit as n→ ∞
and then as ε→ 0 we get the next crucial identity:

∫

Rd

g(x, T )ψ(x) ρ(x)dx =

∫

Rd

g(x, t) dν(t) for a.e. t ∈ (0, T ) , (5.8)

where {ν(t)} is a specific family of positive finite Radon measures. More precisely, ν(t) is the limit
in σ(M(Rd), Cb(R

d)) as ε→ 0 of {ρ(·)ψε(·, t)}, where ψε is in turn the weak limit in L2
ρ(R

d× (τ, T ))
(for all τ ∈ (0, T )) as n → ∞ of {ψn,ε}. Note that, roughly speaking, (5.8) corresponds to identity
(5.6) in the previous formal argument. Finally, we prove rigorously that the r.h.s. of (5.8) has a
nonpositive limit as t→ 0, whence the conclusion follows.

5.2. Construction and properties of the family {ψn,ε}. We begin our proof by introducing the
functions ψn,ε, which formally solve (5.7).

Lemma 5.3. Let d > 2s and assume that ρ satisfies (1.2) for some γ ∈ (0, 2s). Let {an} be a
sequence of functions converging a.e. to the function a as in (5.5) such that:

• for any n ∈ N and t > 0, an(x, t) is a regular function of x;
• for any n ∈ N and x ∈ R

d, an(x, t) is a piecewise constant function of t on the time intervals
(T − (k + 1)T/n, T − kT/n], for any k ∈ {0, . . . , n− 1};

• {‖an‖L∞(Rd×(τ,∞))} is uniformly bounded in n for any τ > 0.

Then, for any ε > 0 and any ψ ∈ D+(R
d), there exists a nonnegative solution ψn,ε to problem (5.7),

in the sense that ψn,ε(·, t) is a continuous curve in Lp
ρ(R

d) (for all p ∈ (1,∞)) satisfying ψn,ε(·, 0) =
ψ(·, 0) and it is absolutely continuous on (T − (k + 1)T/n, T − kT/n) for all k ∈ {0, . . . , n− 1}, so
that the identity

ψn,ε(·, t2)− ψn,ε(·, t1) =

∫ t2

t1

ρ−1(·)(−∆)s [(an + ε)ψn,ε] (·, τ) dτ (5.9)

∀t1, t2 ∈

(
T −

(k + 1)T

n
, T −

kT

n

)
, ∀k ∈ {0, . . . , n− 1}

holds in Lp
ρ(R

d) for all p ∈ (1,∞). Moreover,

ψn,ε ∈ L∞((0, T );Lp
ρ(R

d)) ∀p ∈ [1,∞] and ‖ψn,ε(t)‖1,ρ ≤ ‖ψ‖1,ρ ∀t ∈ [0, T ] . (5.10)

Proof. To construct ψn,ε as in the statement, we first define ζ1 as the solution of
{
ρ(x) (ζ1)t = (−∆)s [(an(T ) + ε) ζ1] in R

d ×
(
T − T

n , T
)
,

ζ1 = ψ on R
d × {T } .

(5.11)

To construct such a solution, one can for instance exploit the change of variable

φ1(x, t) := (an (x, T ) + ε) ζ1(x, t) , (5.12)
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where φ1 is the solution of
{
(φ1)t = (an(T ) + ε) ρ−1(−∆)s(φ1) in R

d ×
(
T − T

n , T
)
,

φ1 = (an(T ) + ε)ψ on R
d × {T } .

(5.13)

Problem (5.13) is indeed solvable by standard semigroup theory. In fact, consider the operator

A1 := ρ−1
1 (−∆)s, where we have set ρ1(x) := (an (x, T ) + ε)−1 ρ(x), with domain Xs,ρ1

= Xs,ρ (see
Definition 3.6). A1 is positive, self-adjoint and generates a Markov semigroup on L2

ρ1
(Rd). These

properties follow from Theorem 3.7. Our initial datum φ1 belongs to Lp
ρ1
(Rd) for all p ∈ [1,∞],

and this is enough in order to have a solution to (5.13) which is continuous up to t = T and
absolutely continuous in

(
T − T

n , T
)

in Lp
ρ1
(Rd) for all p ∈ (1,∞). In fact, the semigroup associated

with A1 enjoys the Markov property and therefore, as a consequence of [13, Theorems 1.4.1, 1.4.2],
can be extended to a contraction semigroup on Lp

ρ1
(Rd) (consistent with the original semigroup on

L2
ρ1
(Rd)∩Lp

ρ1
(Rd)) for all p ∈ [1,∞], which is analytic with a suitable angle θp > 0 if p ∈ (1,∞). By

classical results (see e.g. [33, Theorem 5.2 at p. 61]) the latter property ensures in particular that
problem (5.13) is solved by a differentiable curve φ1(·, t) in Lp

ρ1
(Rd) for all p ∈ (1,∞). Going back

to the original variable ζ1 through (5.12), we deduce that it solves (5.11) in the same sense in which
φ1 solves (5.13). Having at our disposal such a ζ1, we can then solve the problem

{
ρ(x) (ζ2)t = (−∆)s

[(
an
(
T − T

n

)
+ ε
)
ζ2
]

in R
d ×

(
T − 2T

n , T − T
n

)
,

ζ2 = (an (x, T ) + ε)−1 φ1 on R
d ×

{
T − T

n

}
,

just by proceeding as above. That is, we perform the change of variable

φ2(x, t) :=

(
an

(
x, T −

T

n

)
+ ε

)
ζ2(x, t)

and take φ2 as the solution of
{
(φ2)t =

(
an(T − T

n ) + ε
)
ρ−1(−∆)s(φ2) in R

d ×
(
T − 2T

n , T − T
n

)
,

φ2 =
(
an(T − T

n ) + ε
)
ζ1 =

(an(T−T
n
)+ε)

(an(T )+ε) φ1 on R
d ×

{
T − T

n

}
.

It is clear how the procedure goes on and allows us to obtain a solution ψn,ε to (5.7) in the sense of
the statement, just by defining it as

ψn,ε(·, t) := ζk+1(·, t) ∀t ∈

(
T −

(k + 1)T

n
, T −

kT

n

]
, ∀k ∈ {0, . . . , n− 1} .

Finally, since
ρ−1
k+1(−∆)s

generates a contraction semigroup on Lp
ρk+1

(Rd) for all p ∈ [1,∞], where

ρk+1(x) :=

(
an

(
x, T −

kT

n

)
+ ε

)−1

ρ(x) , (5.14)

the inequalities

‖φk+1(t)‖p,ρk+1
≤

∥∥∥∥∥∥

(
an(T − kT

n ) + ε
)

(
an(T − (k−1)T

n ) + ε
)φk

(
T −

kT

n

)∥∥∥∥∥∥
p,ρk+1

(5.15)

∀t ∈

(
T −

(k + 1)T

n
, T −

kT

n

]
, ∀p ∈ [1,∞]

hold for any k ∈ {0, . . . , n − 1} (on the r.h.s. of (5.15) for k = 0 we conventionally set φ0 = ψ
and an(T + T/n) + ε = 1). Going back to the variables ζk+1 and recalling (5.14), from (5.15) one
deduces (5.10): in fact, for p = 1 it is easy to see that the terms containing an cancel out and give
the corresponding inequality, while for p > 1 such terms remain and one obtains an inequality of
the type of ‖ψn,ε(t)‖p,ρ ≤ C(n, ε)‖ψ‖p,ρ, where C(n, ε) is a positive constant depending on n, ε. �
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Lemma 5.4. Let d > 2s and assume that ρ satisfies (1.2) for some γ ∈ (0, 2s) ∩ (0, d− 2s]. Let g
be as in (5.3), a as in (5.5) and an, ψn,ε, ψ as in Lemma 5.3. Then the identity

∫

Rd

g(x, T )ψ(x) ρ(x)dx −

∫

Rd

g(x, t)ψn,ε(x, t) ρ(x)dx

=

∫ T

t

∫

Rd

(an(x, τ) + ε− a(x, τ)) (−∆)s(g)(x, τ)ψn,ε(x, τ) dxdτ

(5.16)

holds for all t ∈ (0, T ].

Proof. To begin with, let us set tk := T (n−k)/n for all k ∈ {0, . . . , n}. Recall that, from Lemma 5.3,
ψn,ε(·, t) is a continuous curve in Lp

ρ(R
d) on (0, T ], absolutely continuous on any interval (tk+1, tk) for

k ∈ {0, . . . , n−1} and satisfying the differential equation in (5.7) on such intervals, for all p ∈ (1,∞).
Moreover, g(·, t) is an absolutely continuous curve in Lp

ρ(R
d) on (0, T ] for all p such that

p ∈

(
d− γ

d− 2s
,∞

)
. (5.17)

Since g(x, t) is a continuous function of x (recall Lemma A.6) and the weight ρ(x) is locally integrable,
in order to prove that g(·, t) ∈ Lp

ρ(R
d) for all p as in (5.17) it suffices to show that g(·, t) ∈ Lp

ρ(B
c
1).

To this end, still Lemma A.6 ensures that g(·, t) ∈ Lp(Rd) for all p satisfying (A.11): the latter
property and Hölder’s inequality imply that g(·, t) ∈ Lp

ρ(B
c
1) for all p as in (5.17).

The fact that g(·, t) is also absolutely continuous in Lp
ρ(R

d) on the time interval (0, T ] is a con-
sequence of (5.4) and of the integrability properties of u1, u2. Hence, due to Lemma 5.3, we get
that

t 7→

∫

Rd

g(x, t)ψn,ε(x, t) ρ(x)dx (5.18)

is a continuous function on (0, T ], absolutely continuous on each interval (tk+1, tk) and satisfies

d

dt

∫

Rd

g(x, t)ψn,ε(x, t) ρ(x)dx

=

∫

Rd

{−a(x, t)(−∆)s(g)(x, t)ψn,ε(x, t) + g(x, t) (−∆)s [(an + ε)ψn,ε] (x, t)} dx

(5.19)

there. As we have just seen, g(·, t) ∈ Lp
ρ(R

d) for all p satisfying (5.17) and ρ−1(·)(−∆)s(g)(·, t) ∈

Lp
ρ(R

d) for all p ∈ [1,∞]. Moreover, as a consequence of Lemma 5.3, we have that (an(·, t) +

ε)ψn,ε(·, t) ∈ Lp
ρ(R

d) for all p ∈ [1,∞] and ρ−1(·)(−∆)s[(an(·, t) + ε)ψn,ε(·, t)] ∈ Lp
ρ(R

d) for all
p ∈ (1,∞). We are therefore in position to apply Proposition B.1 to the r.h.s. of (5.19) (note that
the interval ((d− γ)/(d− 2s),∞) ∩ [2, 2(d− γ)/(d− 2s)) is not empty) to get that

d

dt

∫

Rd

g(x, t)ψn,ε(x, t) ρ(x)dx =

∫

Rd

(an(x, t) + ε− a(x, t)) (−∆)s(g)(x, t)ψn,ε(x, t) dx . (5.20)

But the r.h.s. of (5.20) is in L1((τ, T )) for any τ ∈ (0, T ), from which (5.18) is absolutely continuous
on the whole of (0, T ] and not only on (tk+1, tk). Integrating (5.20) between t and T then yields
(5.16). �

Now we prove a key “conservation of mass” property for ψn,ε.

Lemma 5.5. Let d > 2s and assume that ρ satisfies (1.2) for some γ ∈ (0, 2s). Let ψn,ε and ψ be
as in Lemma 5.3. Then the L1

ρ norm of ψn,ε(·, t) is preserved, that is

∫

Rd

ψn,ε(x, t) ρ(x)dx =

∫

Rd

ψ(x) ρ(x)dx ∀t ∈ (0, T ] . (5.21)
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Proof. Multiplying (5.9) by any ϕ ∈ D(Rd) and integrating in R
d, we obtain:

∫

Rd

ψn,ε(x, t
∗)ϕ(x) ρ(x)dx −

∫

Rd

ψn,ε(x, t∗)ϕ(x) ρ(x)dx

=

∫

Rd

(−∆)s(ϕ)(x)

(∫ t∗

t∗

(an(x, τ) + ε)ψn,ε(x, τ) dτ

)
dx

(5.22)

for all t∗, t
∗ ∈ (tk+1, tk). Since the L1

ρ norm of ψn,ε(·, t) is bounded by the L1
ρ norm of the final

datum ψ (recall (5.10)), from (5.22) we get:
∣∣∣∣
∫

Rd

ψn,ε(x, t
∗)ϕ(x) ρ(x)dx −

∫

Rd

ψn,ε(x, t∗)ϕ(x) ρ(x)dx

∣∣∣∣ ≤ C |t∗ − t∗| ‖ψ‖1,ρ
∥∥ρ−1(−∆)s(ϕ)

∥∥
∞
,

(5.23)
where C := ‖an + ε‖L∞(Rd×(t∗∧t∗,T )) is a positive constant independent of n and ε. Replacing ϕ
with the cut-off function ξR (defined in Lemma A.3) and estimating the r.h.s. of (5.23) as in the
proof of Proposition 4.1 yields

∣∣∣∣
∫

Rd

ψn,ε(x, t
∗)ξR(x)ρ(x)dx −

∫

Rd

ψn,ε(x, t∗)ξR(x)ρ(x)dx

∣∣∣∣

≤C |t∗ − t∗| ‖ψ‖1,ρ c
−1
(
R−2s +R−2s+γ

)
‖(1 + |x|γ)(−∆)s(ξ)‖∞

(5.24)

for all R > 0 and t∗, t
∗ ∈ (tk+1, tk), c being as in (1.2). Recalling that ψn,ε(·, t) is a continuous

curve (for instance in L2
ρ(R

d)) on (0, T ], we can extend the validity of (5.24) (and (5.23)) to any
t∗, t

∗ ∈ (0, T ]. By choosing t∗ = T and letting R → ∞ in (5.24) we finally get (5.21). �

In the next lemma we introduce the Riesz potential of ρ(·)ψn,ε(·, t), which will play a fundamental
role below.

Lemma 5.6. Let d > 2s and assume that ρ satisfies (1.2) for some γ ∈ (0, 2s)∩ (0, d− 2s]. Let an,
ψn,ε and ψ be as in Lemma 5.3. We denote as Hn,ε(·, t) the Riesz potential of ρ(·)ψn,ε(·, t), that is

Hn,ε(x, t) := [I2s ∗ (ρ(·)ψn,ε(·, t))](x) ∀(x, t) ∈ R
d × (0, T ] .

Then Hn,ε(·, t) ∈ Ḣs(Rd) and the identity

‖I2s ∗ (ρψ)‖
2
Ḣs = ‖Hn,ε(t)‖

2
Ḣs + 2

∫ T

t

∫

Rd

(an(x, τ) + ε)ψ2
n,ε(x, τ) ρ(x)dxdτ (5.25)

holds for all t ∈ (0, T ].

Proof. First notice that ρ−1(·)(−∆)s(Hn,ε)(·, t) = ψn,ε(·, t) ∈ Lp
ρ(R

d) for all p ∈ [1,∞] (recall (5.10))

andHn,ε(·, t) ∈ Lp
ρ(R

d) for all p satisfying (5.17) (this can be proved by exploiting Lemma A.6 exactly
as in the proof of Lemma 5.4). Again, since the interval ((d− γ)/(d− 2s),∞)∩ [2, 2(d− γ)/(d− 2s))

is not empty, applying Proposition B.1 we get that Hn,ε(·, t) ∈ Ḣs(Rd) and the identity

‖Hn,ε(t)‖
2
Ḣs =

∫

Rd

Hn,ε(x, t) (−∆)s (Hn,ε) (x, t) dx =

∫

Rd

Hn,ε(x, t)ψn,ε(x, t) ρ(x)dx (5.26)

holds. Thanks to the validity of the differential equation

(Hn,ε)t (x, t) = (an(x, t) + ε)ψn,ε(x, t) for a.e. (x, t) ∈ R
d × (0, T ) , (5.27)

which can be justified as we did for (5.4), taking the time derivative of (5.26) in the intervals
(tk+1, tk), using (5.27), (5.7) and again Proposition B.1, we obtain:

d

dt
‖Hn,ε(t)‖

2
Ḣs = 2

∫

Rd

(an(x, t) + ε)ψ2
n,ε(x, t) ρ(x)dx . (5.28)

A priori, from (5.26), we have that ‖Hn,ε(t)‖
2
Ḣs

is continuous on (0, T ] and absolutely continuous

only on (tk+1, tk). However, the r.h.s. of (5.28) is in L1((τ, T )) for any τ ∈ (0, T ). Hence, (5.25) just
follows by integrating (5.28) from t to T . �
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5.3. Passing to the limit as n → ∞. The goal of the next lemma is to show that, as n → ∞,
{ψn,ε} suitably converges to a limit function ψε that enjoys some crucial properties.

Lemma 5.7. Let d > 2s and assume that ρ satisfies (1.2) for some γ ∈ (0, 2s) ∩ (0, d − 2s].
Let u1 and u2 be two weak solutions to problem (1.1), taking the common positive finite Radon
measure µ as initial datum. Let g be as in (5.3), a as in (5.5) and ψn,ε, ψ as in Lemma 5.3. Then,
up to subsequences, {ψn,ε} converges weakly in L2

ρ(R
d × (τ, T )) (for all τ ∈ (0, T )) to a suitable

nonnegative function ψε and {ρ(·)ψn,ε(·, t)} converges to ρ(·)ψε(·, t) in σ(M(Rd), Cb(R
d)) for a.e.

t ∈ (0, T ). Moreover, ψε enjoys the following properties:
∫

Rd

ψε(x, t) ρ(x)dx =

∫

Rd

ψ(x) ρ(x)dx , (5.29)

∫

Rd

ψ(x)ϕ(x) ρ(x)dx −

∫

Rd

ψε(x, t)ϕ(x) ρ(x)dx

=

∫

Rd

(−∆)s(ϕ)(x)

(∫ T

t

(a(x, τ) + ε)ψε(x, τ) dτ

)
dx ,

(5.30)

∣∣∣∣
∫

Rd

g(x, T )ψ(x) ρ(x)dx −

∫

Rd

g(x, t)ψε(x, t) ρ(x)dx

∣∣∣∣
≤ε (T − t) ‖ψ‖1,ρ ‖u2(τ + h)− u1(τ)‖L∞(Rd×(t,T ))

(5.31)

for a.e. t ∈ (0, T ), for any ϕ ∈ D(Rd).

Proof. From (5.25) one gets that, up to subsequences, {ψn,ε} converges weakly in L2
ρ

(
R

d × (τ, T )
)

(for all τ ∈ (0, T )) to a suitable ψε. Moreover, thanks to the uniform boundedness of {ρ(·)ψn,ε(·, t)}
in L1(Rd) (see (5.10)), for every t ∈ (0, T ) there exists a subsequence (which a priori may depend on
t) such that {ρ(·)ψn,ε(·, t)} converges in σ(M(Rd), Cc(R

d)) to some positive, finite Radon measure
ν(t) (recall the preliminary results of Section 2). We aim at identifying (at least for almost every
t ∈ (0, T )) ν(t) with ρ(·)ψε(·, t), so that a posteriori the subsequence does not depend on t. In order
to do that, let t ∈ (0, T ) be a Lebesgue point of ψε(·, t) (as a curve in L1((τ, T );L2

ρ(R
d)). Taking

any ϕ ∈ D(Rd) and using (5.23), we obtain:
∣∣∣∣∣

∫ t+δ

t

∫

Rd

ψn,ε(x, τ)ϕ(x) ρ(x)dxdτ −

∫ t+δ

t

∫

Rd

ψn,ε(x, t)ϕ(x) ρ(x)dxdτ

∣∣∣∣∣

≤

∫ t+δ

t

∣∣∣∣
∫

Rd

ψn,ε(x, τ)ϕ(x) ρ(x)dx −

∫

Rd

ψn,ε(x, t)ϕ(x) ρ(x)dx

∣∣∣∣ dτ

≤

∫ t+δ

t

C (τ − t) ‖ψ‖1,ρ
∥∥ρ−1(−∆)s(ϕ)

∥∥
∞

dτ =
δ2

2
C ‖ψ‖1,ρ

∥∥ρ−1(−∆)s(ϕ)
∥∥
∞

(5.32)

for all δ sufficiently small. Letting n→ ∞ (up to subsequences) in (5.32) yields
∣∣∣∣∣

∫ t+δ

t

∫

Rd

ψε(x, τ)ϕ(x) ρ(x)dxdτ − δ

∫

Rd

ϕ(x) dν(t)

∣∣∣∣∣ ≤
δ2

2
C ‖ψ‖1,ρ

∥∥ρ−1(−∆)s(ϕ)
∥∥
∞
. (5.33)

Dividing (5.33) by δ and letting δ → 0 one deduces that (recall that t is a Lebesgue point for ψε(·, t))∫

Rd

ψε(x, t)ϕ(x) ρ(x)dx =

∫

Rd

ϕ(x) dν(t) ,

which is valid for any ϕ ∈ D(Rd), whence ψε(x, t)ρ(x)dx = dν(t).
We now prove the claimed properties of ψε. Letting n → ∞ in (5.24) (with t∗ = T and t∗ = t)

and using the just proved convergence of {ρ(·)ψn,ε(·, t)} to ρ(·)ψε(·, t) in σ(M(Rd), Cc(R
d)), we get

∣∣∣∣
∫

Rd

ψ(x)ξR(x) ρ(x)dx −

∫

Rd

ψε(x, t)ξR(x) ρ(x)dx

∣∣∣∣

≤C (T − t) ‖ψ‖1,ρ c
−1
(
R−2s +R−2s+γ

)
‖(1 + |x|γ)(−∆)s(ξ)‖∞

(5.34)
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for a.e. t ∈ (0, T ), c being as in (1.2). Letting R → ∞ in (5.34) we deduce (5.29). Thanks to (5.21)
and (5.29) we infer in particular that

lim
n→∞

‖ψn,ε(t)‖1,ρ = ‖ψε(t)‖1,ρ ,

so that the convergence of {ρ(·)ψn,ε(·, t)} to ρ(·)ψε(·, t) also takes place in σ(M(Rd), Cb(R
d)). Re-

calling that g(·, t) belongs to Cb(R
d) (Lemma A.6), we can let n→ ∞ in (5.16) to obtain

∫

Rd

g(x, T )ψ(x) ρ(x)dx −

∫

Rd

g(x, t)ψε(x, t) ρ(x)dx

= lim
n→∞

(∫ T

t

∫

Rd

(an(x, τ) + ε− a(x, τ)) (−∆)s(g)(x, τ)ψn,ε(x, τ) dxdτ

)

= lim
n→∞

(∫ T

t

∫

Rd

(an(x, τ) + ε− a(x, τ)) (u2(x, τ + h)− u1(x, τ))ψn,ε(x, τ) ρ(x)dxdτ

)

=ε

∫ T

t

∫

Rd

(u2(x, τ + h)− u1(x, τ))ψε(x, τ) ρ(x)dxdτ for a.e. t ∈ (0, T ) ,

(5.35)

where in the last integral we can pass to the limit since {ψn,ε} tends to ψε weakly in L2
ρ(R

d× (t, T )),

{an} tends to a pointwise with {‖an‖L∞(Rd×(t,T ))} bounded, and u1, u2 belong to Lp
ρ(R

d×(t, T +h))
for all p ∈ [1,∞]. In particular, from (5.35) and (5.29) we get (5.31). Notice that, in a similarly way,
we can pass to the limit in (5.22) (which actually holds for any t∗, t

∗ ∈ (0, T )) and get (5.30). �

5.4. Passing to the limit as ε → 0 and proof of Theorem 3.4. We are now in position to
prove Theorem 3.4, using the strategy of [34]: we give some detail for the reader’s convenience.

Proof of Theorem 3.4. To begin with, we introduce the Riesz potential Hε(·, t) of ρ(·)ψε(·, t). Since
we only know that ρ(·)ψε(·, t) ∈ L1(Rd), we have no information over the integrability ofHε(·, t) other
than L1

loc(R
d) (by classical results, see e.g. [28, p. 61]). However, exploiting (5.30) and proceeding

once again as in the proof of (4.21), we obtain

I2s ∗ (ρψ)−Hε(·, t) =

∫ T

t

(a(·, τ) + ε)ψε(·, τ) dτ ≥ 0 for a.e. t ∈ (0, T ) ,

whence, in particular,

0 ≤ Hε(x, t1) ≤ Hε(x, t2) ≤ Hε(x, T ) = I2s ∗ (ρψ) (x) (5.36)

for a.e. 0 < t1 ≤ t2 ≤ T and a.e. x ∈ R
d. The above inequality shows that Hε(·, t) belongs to Lp(Rd)

at least for the same p for which Hε(·, T ) does, namely for any p ∈ (d/(d− 2),∞].
Our next goal is to let ε→ 0 (along a fixed sequence whose index for the moment we omit, in order

to improve readability). Thanks to the boundedness of {ρ(·)ψε(·, t)} in L1(Rd) (trivial consequence
of (5.29)), for a.e. t ∈ (0, T ) there exists a subsequence {εn} (a priori depending on t) such that
{ρ(·)ψε(·, t)} converges to a positive finite Radon measure ν(t) in σ(M(Rd), Cc(R

d)). In order to
overcome the possible dependence of {εn} on t, we exploit the properties of {Hε}. First notice
that (5.36) ensures the uniform boundedness of {Hε} in Lp(Rd × (0, T )) for any p ∈ (d/(d− 2),∞].
This entails the existence of a decreasing subsequence {εm} such that {Hεm} converges weakly in
Lp(Rd × (0, T )) to a suitable limit H . Mazur’s Lemma implies that there exists a sequence {Hk} of
convex combinations of {Hεm} that converges strongly to H in Lp(Rd × (0, T )). By definition, the
sequence {Hk} is of the form

Hk =

Mk∑

m=1

λm,kHεm ,

Mk∑

m=1

λm,k = 1
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for some sequence {Mk} ⊂ N and a suitable choice of the coefficients λm,k ∈ [0, 1]. With no loss of
generality we shall also assume that

lim
k→∞

(
Mk∑

m=1

εmλm,k

)
= 0 .

This can be justified by applying iteratively Mazur’s Lemma on suitable subsequences of {Hεm}.
Now notice that the function whose Riesz potential is Hk is

fk(x, t) =

Mk∑

m=1

λm,k ρ(x)ψεm (x, t) .

Multiplying (5.31) (with ε = εm) by λm,k and summing over k, one gets that fk satisfies
∣∣∣∣
∫

Rd

g(x, T )ψ(x) ρ(x)dx −

∫

Rd

g(x, t)fk(x, t) dx

∣∣∣∣

≤

(
Mk∑

m=1

εmλm,k

)
(T − t) ‖ψ‖1,ρ ‖u2(τ + h)− u1(τ)‖L∞(Rd×(t,T ))

(5.37)

for a.e. t ∈ (0, T ), whereas from (5.29) and (5.34) we infer that
∣∣∣∣
∫

Rd

ψ(x)ξR(x) ρ(x)dx −

∫

Rd

fk(x, t) ξR(x) dx

∣∣∣∣

≤C (T − t) ‖ψ‖1,ρ c
−1
(
R−2s +R−2s+γ

)
‖(1 + |x|γ)(−∆)s(ξ)‖∞

(5.38)

for a.e. t ∈ (0, T ) and
∫

Rd

ψ(x) ρ(x)dx =

∫

Rd

fk(x, t) dx for a.e. t ∈ (0, T ) . (5.39)

Letting k → ∞ we find that, for a.e. t ∈ (0, T ), there exists a subsequence of {fk(·, t)} (a priori
depending on t) that converges in σ(M(Rd), Cc(R

d)) to a positive, finite Radon measure ν(t). But
the fact that {Hk} converges strongly in Lp(Rd× (0, T )) to H forces the potential of ν(t) to coincide
a.e. with H(·, t). This is a consequence of [28, Theorem 3.8]. By [28, Theorem 1.12] we therefore
deduce that the limit ν(t) is uniquely determined by its potential H(·, t). This identification allows
to assert that for a.e. t ∈ (0, T ) the whole sequence {fk(·, t)} converges to ν(t) in σ(M(Rd), Cc(R

d)).
Passing to the limit in (5.36) (after having set ε = εm, multiplied by λm,k and summed over k)

we deduce that also the potentials H(·, t) of ν(t) are ordered and bounded above by I2s ∗ (ρψ):

0 ≤ H(x, t1) ≤ H(x, t2) ≤ I2s ∗ (ρψ) (x) for a.e. 0 < t1 ≤ t2 ≤ T , for a.e. x ∈ R
d. (5.40)

Letting k → ∞ in (5.38) yields
∣∣∣∣
∫

Rd

ψ(x)ξR(x) ρ(x)dx −

∫

Rd

ξR(x) dν(t)

∣∣∣∣

≤C (T − t) ‖ψ‖1,ρ c
−1
(
R−2s +R−2s+γ

)
‖(1 + |x|γ)(−∆)s(ξ)‖∞

(5.41)

for a.e. t ∈ (0, T ), whence, letting R → ∞ in (5.41), we obtain
∫

Rd

ψ(x) ρ(x)dx =

∫

Rd

dν(t) for a.e. t ∈ (0, T ) . (5.42)

Gathering (5.39) and (5.42) we infer that {fk(·, t)} converges to ν(t) also in σ(M(Rd), Cb(R
d)):

this allows us to pass to the limit in (5.37) to get (by exploiting (5.4) as well) identity (5.8). As a
consequence of the monotonicity given by (5.40) and thanks to (5.41)-(5.42), the curve ν(t) can be
extended to every t ∈ (0, T ] so that it still satisfies (5.40)-(5.42) (one uses again [28, Theorem 3.8]).
Recalling that g(x, t) = U2(x, t+ h)− U1(x, t) and that potentials do not increase in time (Lemma
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5.1), we have that g(x, t) ≤ U2(x, h) − U1(x, t0) holds for all x ∈ R
d and all t0 > t. Because ν(t) is

a positive finite Radon measure, this fact and (5.8) imply that

∫

Rd

g(x, T )ψ(x) ρ(x)dx ≤

∫

Rd

(U2(x, h) − U1(x, t0)) dν(t) ∀t0 > t . (5.43)

Our next goal is to let t tend to zero in (5.43). Since the mass of ν(t) is constant (formula (5.42)), up
to subsequences ν(t) converges to a suitable positive finite Radon measure ν in σ(M(Rd), Cc(R

d))
as t ↓ 0. Moreover, by (5.40), we know that the potentials H(·, t) of ν(t) are nondecreasing in t (for
a.e. x): in particular, H(·, t) admits a pointwise limit almost everywhere H0 as t ↓ 0. Theorem 3.8
of [28] ensures that H0 coincides almost everywhere with the potential of the limit measure ν (which
therefore does not depend on the subsequence). We can then pass to the limit in the integral

∫

Rd

U1(x, t0) dν(t) . (5.44)

Indeed, by Fubini’s Theorem, (5.44) is equal to

∫

Rd

u1(x, t0)H(x, t) ρ(x)dx . (5.45)

Passing to the limit in (5.45) as t ↓ 0 we get that

lim
t↓0

∫

Rd

u1(x, t0)H(x, t) ρ(x)dx =

∫

Rd

u1(x, t0)H0(x) ρ(x)dx (5.46)

by dominated convergence. Recalling thatH0 is the potential of ν, and using again Fubini’s Theorem,
(5.46) can be rewritten as

lim
t↓0

∫

Rd

U1(x, t0) dν(t) =

∫

Rd

U1(x, t0) dν .

One proceeds similarly for the integral

∫

Rd

U2(x, h) dν(t) .

Hence, passing to the limit as t ↓ 0 in (5.43) yields

∫

Rd

g(x, T )ψ(x) ρ(x)dx ≤

∫

Rd

(U2(x, h)− U1(x, t0)) dν ∀t0 > 0 . (5.47)

Now we let t0 ↓ 0 in (5.47). By monotone convergence (Lemmas 5.1 and 5.2) we obtain

∫

Rd

g(x, T )ψ(x) ρ(x)dx ≤

∫

Rd

(U2(x, h)− Uµ(x)) dν ; (5.48)

in this step it is crucial that the limit of U1(x, t0) to Uµ(x) is taken for every x ∈ R
d (Lemma 5.2),

because we have no information over ν besides the fact that it is a positive finite Radon measure.
Still by monotonicity we have that U2(x, h) ≤ Uµ(x) for every x ∈ R

d. Thus, from (5.48) it follows
that ∫

Rd

g(x, T )ψ(x) ρ(x)dx ≤ 0 . (5.49)

Since (5.49) holds for any h, T > 0 and any ψ ∈ D+(R
d), we infer that U2 ≤ U1. By interchanging

the role of u1 and u2 we get that U1 ≤ U2, whence U1 = U2 and u1 = u2. �
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Appendix A.

We recall here some basic properties of the fractional Laplacian (and of a similar nonlocal, non-
linear operator) of functions in D(Rd). We omit the proofs of the first two lemmas, since they follow
by exploiting the same strategy of [5, Lemma 2.1].

Lemma A.1. The s-Laplacian (−∆)s(φ)(x) of any φ ∈ D(Rd) is a regular function which decays
(together with its derivatives) at least like |x|−d−2s as |x| → ∞.

Lemma A.2. For any φ ∈ D(Rd), the function

ls(φ)(x) :=

∫

Rd

(φ(x) − φ(y))2

|x− y|d+2s
dy ∀x ∈ R

d

is regular and decays (together with its derivatives) at least like |x|−d−2s as |x| → ∞.

Lemma A.3. For any R > 0, let ξR be the cut-off function

ξR(x) := ξ
( x
R

)
∀x ∈ R

d ,

where ξ(x) is a positive, regular function such that ‖ξ‖∞ ≤ 1, ξ ≡ 1 in B1 and ξ ≡ 0 in Bc
2. Then,

(−∆)s(ξR) and ls(ξR) enjoy the following property:

(−∆)s(ξR)(x) =
1

R2s
(−∆)s(ξ)

( x
R

)
, ls(ξR)(x) =

1

R2s
ls(ξ)

( x
R

)
∀x ∈ R

d .

Proof. We only prove the result for ls(ξR), since the proof for (−∆)s(ξR) is identical. Letting
ỹ = y/R, one has:

ls(ξR)(x) =

∫

Rd

(ξR(x)− ξR(y))
2

|x− y|d+2s
dy =

1

R2s

∫

Rd

(ξ(x/R)− ξ(ỹ))2

|x/R− ỹ|d+2s
dỹ =

1

R2s
ls(ξ)

( x
R

)
.

�

The next lemmas contain technical ingredients concerning fractional Sobolev spaces and Riesz
potentials, which we need in the proofs of our existence and uniqueness results.

Lemma A.4. Let d > 2s and assume that ρ satisfies (1.2) for some γ ∈ (0, d + 2s]. Consider a

function v ∈ L2
loc((0,∞); Ḣs(Rd)) such that, for all t2 > t1 > 0,

∫ t2

t1

∫

Rd

|v(x, t)|2 ρ(x)dxdt ≤ C0 , (A.1)

∫ t2

t1

∫

Rd

∣∣(−∆)
s
2 (v) (x, t)

∣∣2 dxdt ≤ C0 (A.2)

and ∫ t2

t1

∫

Rd

|vt(x, t)|
2
ρ(x)dxdt ≤ C0 , (A.3)

where C0 is a positive constant depending only on t1 and t2. Take any cut-off functions ξ1 ∈ C∞
c (Rd),

ξ2 ∈ C∞
c ((0,∞)) and define vc : R

d → R as follows:

vc(x, t) := ξ1(x)ξ2(t)v(x, t) ∀(x, t) ∈ R
d × R ,

where we implicitly assume ξ2 and v to be zero for t < 0. Then

‖vc‖
2
Hs(Rd+1) = ‖vc‖

2
L2(Rd+1) + ‖vc‖

2
Ḣs(Rd+1) ≤ C′ (A.4)

for a positive constant C′ that depends only on ρ, ξ1 and ξ2 (also through C0).
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Proof. The validity of

‖vc‖
2
L2(Rd+1) ≤ C′ (A.5)

is an immediate consequence of (A.1) and of the fact that ρ is bounded away from zero on compact
sets (from now on C′ will be a constant as in the statement that may change from line to line).
Moreover, since (vc)t = ξ1ξ

′
2v + ξ1ξ2vt, by (A.1), (A.3) and again the fact that ρ is bounded away

from zero on compact sets we deduce that

‖(vc)t‖
2
L2(Rd+1) ≤ C′ . (A.6)

Now we have to handle the spatial regularity of vc. Straightforward computations show that

‖vc(t)‖
2
Ḣs(Rd) =

Cd,s

2
ξ22(t)

∫

Rd

ξ21(x)

(∫

Rd

(v(x, t)− v(y, t))
2

|x− y|d+2s
dy

)
dx

+
Cd,s

2
ξ22(t)

∫

Rd

|v(y, t)|
2

(∫

Rd

(ξ1(x) − ξ1(y))
2

|x− y|d+2s
dx

)
dy

+ Cd,s ξ
2
2(t)

∫

Rd

∫

Rd

ξ1(x)v(y, t)
(v(x, t) − v(y, t)) (ξ1(x) − ξ1(y))

|x− y|d+2s
dxdy .

(A.7)

The Cauchy-Schwarz inequality allows us to bound the third integral on the r.h.s. of (A.7) by the
first two integrals. As concerns the first one, we have:

Cd,s

2
ξ22(t)

∫

Rd

ξ21(x)

(∫

Rd

(v(x, t) − v(y, t))2

|x− y|d+2s
dy

)
dx ≤ χsupp ξ2(t) ‖ξ2‖

2
∞ ‖ξ1‖

2
∞ ‖v(t)‖

2
Ḣs(Rd) . (A.8)

In order to bound the second integral, it is important to recall that the function ls(ξ1)(y) is regular
and decays at least like |y|−d−2s as |y| → ∞ (for the definition and properties of ls see Lemmas A.2
and A.3). Hence, thanks to the assumptions on ρ and γ, we infer that

ξ22(t)

∫

Rd

|v(y, t)|2
(∫

Rd

(ξ1(x)− ξ1(y))
2

|x− y|d+2s
dx

)
dy ≤ C′χsupp ξ2(t) ‖ξ2‖

2
∞

∫

Rd

|v(y, t)|2 ρ(y)dy . (A.9)

Integrating in time (A.7), using (A.8), (A.9), (A.1), (A.2) and recalling the validity of the identity∥∥(−∆)
s
2 (vc)(t)

∥∥2
L2(Rd)

= ‖vc(t)‖
2
Ḣs(Rd), we then get

∥∥(−∆)
s
2 (vc)

∥∥2
L2(Rd+1)

≤ C′ . (A.10)

By exploiting (A.5), (A.6) and (A.10) one deduces (A.4), e.g. by using Fourier transform methods.
�

Lemma A.5. Let d > 2s and φ : Rd → R be a continuous function which belongs to L1(Rd) and
decays at least like |x|−d as |x| → ∞. Then, the convolution I2s ∗ φ (namely, the Riesz potential of
φ) is also a continuous function, decaying at least like |x|−d+2s as |x| → ∞.

Proof. The idea of the proof is to split the convolution (I2s ∗ φ)(x) in the three regions Bc
2|x|(0),

B|x|/2(x), B2|x|(0) \B|x|/2(x) and use there the decay and integrability properties of φ and I2s. We
omit the details. �

Lemma A.6. Let d > 2s and assume that ρ satisfies (1.2) for some γ ∈ (0, 2s). Let v ∈ L1
ρ(R

d) ∩

L∞(Rd) and Uv
ρ be the Riesz potential of ρv. Then Uv

ρ belongs to C(Rd)∩Lp(Rd) for all p such that

p ∈

(
d

d− 2s
,∞

]
. (A.11)
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Proof. In order to prove that Uv
ρ belongs to C(Rd) ∩ Lp(Rd) for all p satisfying (A.11), we proceed

as follows:

Uv
ρ (x) =

∫

B1(0)

ρ(y) v(y) I2s(x− y) dy

︸ ︷︷ ︸
Uv

ρ,1(x)

+

∫

Rd

χBc
1
(0)(y) ρ(y) v(y) I2s(x − y) dy

︸ ︷︷ ︸
Uv

ρ,2(x)

.

Exploiting the fact that v ∈ L∞(Rd) and γ < 2s (so that |y|−d+2s ρ(y) is locally integrable), it is
easily seen that Uv

ρ,1(x) is a continuous function which decays at least like |x|−d+2s as |x| → ∞. In

particular, it belongs to Lp(Rd) for all p satisfying (A.11). As concerns Uv
ρ,2(x), notice that since

v ∈ L1
ρ(R

d) ∩ L∞(Rd) we have that the function χBc
1
(0)ρv belongs to L1(Rd) ∩ L∞(Rd). Hence

Uv
ρ,2(x) is continuous too. To prove that it belongs to Lp(Rd) for all p satisfying (A.11), we write:

Uv
ρ,2 =

(
χB1(0) I2s

)
∗
(
χBc

1
(0)ρv

)
+
(
χBc

1
(0) I2s

)
∗
(
χBc

1
(0)ρv

)
; (A.12)

since χB1(0) I2s ∈ L1(Rd) and χBc
1
(0)ρv ∈ L1(Rd) ∩ L∞(Rd), the first convolution in (A.12) belongs

to L1(Rd) ∩ L∞(Rd). Using the fact that χBc
1
(0) I2s ∈ Lp(Rd) for all p as in (A.11) and χBc

1
(0)ρv ∈

L1(Rd), we infer that the second convolution in (A.12) belongs to Lp(Rd) for all such p. The latter
property is then inherited by Uv

ρ,2. �

Appendix B.

This section is devoted to give a sketch of the proofs of Theorem 3.7 and of the forthcoming
Proposition B.1.

Sketch of proof of Theorem 3.7. We start from the validity of the fractional “integration by parts”
formula

Cd,s

2

∫

Rd

∫

Rd

(φ(x) − φ(y))(ψ(x) − ψ(y))

|x− y|d+2s
dxdy =

∫

Rd

φ(x)(−∆)s(ψ)(x) dx (B.1)

for all φ, ψ ∈ D(Rd), and our aim is to extend it to all functions of Xs,ρ. In order to do it, the first
step consists in showing that C∞(Rd) ∩ Xs,ρ is dense in Xs,ρ. This can be done by mollification
arguments, which however are slightly more complicated than the standard ones, since we work with
the weighted spaces L2

ρ(R
d) and L2

ρ−1(Rd) instead of L2(Rd). Hence, given v, w ∈ C∞(Rd) ∩ Xs,ρ,

one plugs the cut-off functions φ := ξRv and ψ := ξRw into (B.1) and lets R → ∞. The problem
is that on the r.h.s. there appear terms involving ‖ξRw‖Ḣs , and a priori we do not know whether

C∞(Rd) ∩Xs,ρ is continuously embedded in Ḣs(Rd). But this turns out to be true: the inequality

Cd,s

2

∫

Rd

∫

Rd

(w(x) − w(y))2

|x− y|d+2s
dxdy ≤

∫

Rd

w(x)(−∆)s(w)(x) dx ∀w ∈ C∞(Rd) ∩Xs,ρ (B.2)

can be proved just by repeating the above scheme with φ = ψ = ξRw. In fact, on the r.h.s. of (B.1)
we still have terms involving ‖ξRw‖Ḣs , but the latter are small and can be absorbed into the l.h.s.;
passing to the limit as R→ ∞ yields (B.2). Therefore, we can now let R→ ∞ safely in (B.1) (with
φ = ξRv and ψ = ξRw) and obtain that

Cd,s

2

∫

Rd

∫

Rd

(v(x) − v(y))(w(x) − w(y))

|x− y|d+2s
dxdy =

∫

Rd

v(x)(−∆)s(w)(x) dx (B.3)

for all v, w ∈ C∞(Rd) ∩ Xs,ρ, which in particular shows that (B.2) is actually an equality. Notice
that in all these approximation procedures using cut-off functions, to prove that “remainder” terms
go to zero we deeply exploit the results provided by Lemmas A.1, A.2 and A.3. It is in fact here that
the condition γ < 2s plays a fundamental role: in particular, it ensures that both ‖ρ−1(−∆)s(ξR)‖∞
and ‖ρ−1ls(ξR)‖∞ vanish as R → ∞. As already mentioned, we refer the reader to the note [31] for
the details. However, for similar computations involving (−∆)s(ξR) and ls(ξR), see also the proofs
of Proposition 4.1, Lemma 4.3 and Lemma 5.5.



26 GABRIELE GRILLO, MATTEO MURATORI, FABIO PUNZO

By the claimed density of C∞(Rd) ∩Xs,ρ, we are allowed to extend (B.3) to the whole of Xs,ρ.
Clearly, the r.h.s. of (B.3) can be rewritten as

∫

Rd

v(x)A(w)(x) ρ(x)dx ,

and letting v = w we obtain that the operator A is positive. The fact that it is densely defined is
trivial since, for instance, D(Rd) ⊂ Xs,ρ. Because in (B.3) one can interchange the role of v and
w, we also have that A is symmetric. In order to prove that it is self-adjoint we need to show that
D(A∗) ⊂ D(A), namely that any function of D(A∗) also belongs to Xs,ρ. It is indeed straightforward
to check this fact, and we leave it to the reader.

We finally deal with the quadratic form Q associated to A. Thanks to (B.3), we have that

Q(v, v) =
Cd,s

2

∫

Rd

∫

Rd

(v(x) − v(y))2

|x− y|d+2s
dxdy ∀v ∈ D(A) . (B.4)

As it is well known (see e.g. [13]), the domain D(Q) of Q is just the closure of D(A) w.r.t. the norm

‖v‖2Q := ‖v‖22,ρ−1 +Q(v, v) = ‖v‖22,ρ−1 + ‖v‖2Ḣs .

It is then easy to see that such a closure is nothing but L2
ρ(R

d)∩ Ḣs(Rd) and the quadratic form on

D(Q) = L2
ρ(R

d) ∩ Ḣs(Rd) is still represented by (B.4).
By classical results (we refer again to [13]), proving that A generates a Markov semigroup is

equivalent to proving that if v belongs to D(Q) then both v∨0 and v∧1 belong to D(Q) and satisfy

Q(v ∨ 0, v ∨ 0) ≤ Q(v, v) , Q(v ∧ 1, v ∧ 1) ≤ Q(v, v) .

But the latter properties are straightforward consequences of the characterization of Q given above.
The last assertions follow from the general theory of symmetric Markov semigroups (cf. [13,

Section 1.4]) and from their known analiticity properties (cf. [13, Theorem 1.4.2]). See also the
discussion in the proof of Lemma 5.3. �

The next proposition extends the symmetry property of the operator A = ρ−1 (−∆)s to functions
which belong to other suitable Lp

ρ spaces. This is essential in proving our uniqueness Theorem 3.4
for certain values of γ and s in low dimensions d ≤ 3, more precisely whenever (d− γ)/(d− 2s) > 2.

Proposition B.1. Let d > 2s and assume that ρ satisfies (1.2) for some γ ∈ [0, 2s)∩ [0, d− 2s] and
γ0 ∈ [0, γ]. Let p ∈ [2, 2(d− γ)/(d− 2s)) and p′ = p/(p− 1) be its conjugate exponent. Suppose that

v, w ∈ Lp
ρ(R

d) are such that A(v), A(w) ∈ Lp′

ρ (Rd). Then v, w ∈ Ḣs(Rd) and the following formula
holds: ∫

Rd

v(x)(−∆)s(w)(x) dx =

∫

Rd

(−∆)s(v)(x)w(x) dx

=
Cd,s

2

∫

Rd

∫

Rd

(v(x) − v(y))(w(x) − w(y))

|x− y|d+2s
dxdy .

Sketch of proof. The method of proof proceeds along the lines of the one of Theorem 3.7. The main
difference here lies in the fact that, when using the approximation procedure by cut-off functions
mentioned above, if p is strictly larger than 2 in order to prove that “remainder” terms go to zero
one cannot exploit the fact that ρ−1(−∆)s(ξR) and ρ−1ls(ξR) vanish in L∞(Rd) as R→ ∞. In fact,
such remainder terms are of the form

∫

Rd

v2(x)(−∆)s(ξR)(x) dx or

∫

Rd

v2(x) ls(ξR)(x) dx . (B.5)

Thanks to Lemmas A.1, A.2 and A.3, it is direct to see that ‖ρ−1(−∆)s(ξR)‖q,−γ and ‖ρ−1ls(ξR)‖q,−γ

vanish as R → ∞ provided q > (d− γ)/(2s− γ), whence the condition p ∈ [2, 2(d− γ)/(d− 2s)) to
ensure that also the integrals in (B.5) go to zero as R → ∞. �



27

Acknowledgements

G. G. and M. M. have partially been supported by the MIUR-PRIN 2012 grant “Equazioni
alle derivate parziali di tipo ellittico e parabolico: aspetti geometrici, disuguaglianze collegate, e
applicazioni”. F. P. has been supported by MIUR-PRIN 2012 grant “Critical Point Theory and
Perturbative Methods for Nonlinear Differential Equations”. All authors thank the Gruppo Nazionale
per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale
di Alta Matematica (INdAM).

References

[1] L. Ambrosio, N. Fusco, D. Pallara, “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford
Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.

[2] D. G. Aronson, L. Caffarelli, The initial trace of a solution of the porous medium equation, Trans. Amer. Math.
Soc. 280 (1983), 351–366.

[3] B. Barrios, I. Peral, F. Soria, E. Valdinoci, A Widder’s type theorem for the heat equation with nonlocal diffusion,
Arch. Ration. Mech. Anal. 213 (2014), 629–650.

[4] P. Biler, C. Imbert, G. Karch, Barenblatt profiles for a nonlocal porous medium equation, C. R. Math. Acad. Sci.
Paris 349 (2011), 641–645.

[5] M. Bonforte, J. L. Vázquez, Quantitative local and global a priori estimates for fractional nonlinear diffusion

equations, Adv. Math. 250 (2014), 242–284.
[6] P. Bénilan, R. Gariepy, Strong solutions in L1 of degenerate parabolic equations, J. Differential Equations 119

(1995), 473–502.
[7] H. Brézis, A. Friedman, Nonlinear parabolic equations involving measures as initial data, J. Math. Pures Appl.

62 (1983), 73–97.
[8] E. Chasseigne, J. L. Vázquez, Theory of extended solutions for fast-diffusion equations in optimal classes of

data. Radiation from singularities, Arch. Ration. Mech. Anal. 164 (2002), 133–187.
[9] E. Chasseigne, J. L. Vázquez, Extended solutions for general fast diffusion equations with optimal measure data,

Adv. Differential Equations 11 (2006), 627–646.
[10] H. Chen, L. Véron, Y. Wang, Fractional heat equations involving initial measure data and subcritical absorption,

preprint arXiv:1401.7187.
[11] B. E. J. Dahlberg, C. E. Kenig, Nonnegative solutions of the porous medium equation, Comm. Partial Differential

Equations 9 (1984), 409–437.
[12] P. D’Ancona, R. Luca’, Stein-Weiss and Caffarelli-Kohn-Nirenberg inequalities with angular integrability, J.

Math. Anal. Appl. 388 (2012), 1061–1079.
[13] E. B. Davies, “Heat Kernels and Spectral Theory”, Cambridge Tracts in Mathematics, 92. Cambdridge University

Press, Cambridge, 1989.
[14] B. Devyver, M. Fraas, Y. Pinchover, Optimal hardy weight for second-order elliptic operator: an answer to a

problem of Agmon, J. Funct. Anal. 266 (2014), 4422–4489.
[15] J. Dolbeault, I. Gentil, A. Guillin, F.-Y. Wang, Lq-functional inequalities and weighted porous media equations,

Potential Anal. 28 (2008), 35–59.
[16] J. Dolbeault, B. Nazaret, G. Savaré, On the Bakry-Emery criterion for linear diffusions and weighted porous

media equations, Commun. Math. Sci. 6 (2008), 477–494.
[17] A. de Pablo, F. Quirós, A. Rodríguez, J. L. Vázquez, A fractional porous medium equation, Adv. Math. 226

(2011), 1378–1409.
[18] A. de Pablo, F. Quirós, A. Rodríguez, J. L. Vázquez, A general fractional porous medium equation, Comm. Pure

Appl. Math. 65 (2012), 1242–1284.
[19] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136

(2012), 521–573.
[20] D. Eidus, The Cauchy problem for the nonlinear filtration equation in an inhomogeneous medium, J. Differential

Equations 84 (1990), 309–318.
[21] D. Eidus, S. Kamin, The filtration equation in a class of functions decreasing at infinity, Proc. Amer. Math. Soc.

120 (1994), 825–830.
[22] G. Grillo, M. Muratori, Sharp short and long time L∞ bounds for solutions to porous media equations with

Neumann boundary conditions, J. Differential Equations 254 (2013), 2261–2288.
[23] G. Grillo, M. Muratori, M. M. Porzio, Porous media equations with two weights: existence, uniqueness, smoothing

and decay properties of energy solutions via Poincaré inequalities, Discrete Contin. Dyn. Syst. 33 (2013), 3599–
3640.

[24] G. Grillo, M. Muratori, F. Punzo, On the asymptotic behaviour of solutions to the fractional porous medium

equation with variable density, Discrete Contin. Dyn. Syst. 35 (2015), 5927–5962.

http://arxiv.org/abs/1401.7187


28 GABRIELE GRILLO, MATTEO MURATORI, FABIO PUNZO

[25] S. Kamin, G. Reyes, J. L. Vázquez, Long time behavior for the inhomogeneous PME in a medium with rapidly

decaying density, Discrete Contin. Dyn. Syst. 26 (2010), 521–549.
[26] S. Kamin, P. Rosenau, Propagation of thermal waves in an inhomogeneous medium, Comm. Pure Appl. Math.

34 (1981), 831–852.
[27] S. Kamin, P. Rosenau, Nonlinear diffusion in a finite mass medium, Comm. Pure Appl. Math. 35 (1982), 113–127.
[28] N. S. Landkof, “Foundations of Modern Potential Theory”, Die Grundlehren der mathematischen Wissenschaften,

Band 180. Springer-Verlag, New York-Heidelberg, 1972.
[29] M. Marcus, L. Véron, Capacitary estimates of solutions of semilinear parabolic equations, Calc. Var. Partial

Differential Equations 48 (2013), 131–183.
[30] G. Mingione, Nonlinear measure data problems, Milan J. Math. 79 (2011), 429–496.
[31] M. Muratori, On the self-adjointness of the fractional Laplacian in some weighted L2 spaces, in preparation.
[32] M. M. H. Pang, L1 properties of two classes of singular second order elliptic operators, J. London Math. Soc. 38

(1988), 525–543.
[33] A. Pazy, “Semigroups of Linear Operators and Applications to Partial Differential Equations”, Applied Mathe-

matical Sciences, 44. Springer-Verlag, New York, 1983.
[34] M. Pierre, Uniqueness of the solutions of ut−∆ϕ(u) = 0 with initial datum a measure, Nonlinear Anal. 6 (1982),

175–187.
[35] M. M. Porzio, F. Smarrazzo, A. Tesei, Radon measure-valued solutions for a class of quasilinear parabolic

equations, Arch. Ration. Mech. Anal. 210 (2013), 713–772.
[36] F. Punzo, On the Cauchy problem for nonlinear parabolic equations with variable density, J. Evol. Equ. 9 (2009),

429–447.
[37] F. Punzo, G. Terrone, Well-posedness for the Cauchy problem for a fractional porous medium equation with

variable density in one space dimension, Differential Integral Equations 27 (2014), 461–482.
[38] F. Punzo, G. Terrone, On the Cauchy problem for a general fractional porous medium equation with variable

density, Nonlinear Anal. 98 (2014), 27–47.
[39] G. Reyes, J. L. Vázquez, The Cauchy problem for the inhomogeneous porous medium equation, Netw. Heterog.

Media 1 (2006), 337–351.
[40] G. Reyes, J. L. Vázquez, The inhomogeneous PME in several space dimensions. Existence and uniqueness of

finite energy solutions, Commun. Pure Appl. Anal. 7 (2008), 1275–1294.
[41] G. Reyes, J. L. Vázquez, Long time behavior for the inhomogeneous PME in a medium with slowly decaying

density, Commun. Pure Appl. Anal. 8 (2009), 493–508.
[42] J. L. Vázquez, Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous

medium type, J. Eur. Math. Soc. 16 (2014), 769–803.
[43] J. L. Vázquez, “The Porous Medium Equation. Mathematical Theory”, Oxford Mathematical Monographs. The

Clarendon Press, Oxford University Press, Oxford, 2007.

Gabriele Grillo, Matteo Muratori: Dipartimento di Matematica “F. Brioschi”, Politecnico di Mi-

lano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

E-mail address: gabriele.grillo@polimi.it

E-mail address: matteo.muratori@polimi.it

Fabio Punzo: Dipartimento di Matematica “F. Enriques”, Università degli studi di Milano, via Cesare

Saldini 50, 20133 Milano, Italy

E-mail address: fabio.punzo@unimi.it


	1. Introduction
	2. Preliminary tools
	3. Statements of the main results
	4. Existence of weak solutions
	4.1. Approximate problems with initial data in L1(Rd) L(Rd) 
	4.2. Stroock-Varopoulos inequality and smoothing estimate
	4.3. Proof of the existence result
	4.4. Existence and uniqueness of initial traces
	4.5. Strong solutions and decrease of the norms

	5. Uniqueness of weak solutions
	5.1. Main ideas in the proof of uniqueness
	5.2. Construction and properties of the family {n,}
	5.3. Passing to the limit as n
	5.4. Passing to the limit as 0 and proof of Theorem 3.4

	Appendix A. 
	Appendix B. 
	Acknowledgements
	References

