1504.08292v1 [math.AP] 30 Apr 2015

arxXiv

1.
2.

2.1.
2.2

3

3.1
3.2.
3.3.
3.4.

4

4.1.
4.2.
4.3.

5

5.1
5.2.

6.
7.

NONLOCAL DIFFUSION AND APPLICATIONS

CLAUDIA BUCUR, ENRICO VALDINOCI

ABsTrRACT. We consider the fractional Laplace framework and provide mod-
els and theorems related to nonlocal diffusion phenomena. Some applications
are presented, including: a simple probabilistic interpretation, water waves,
crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and
Schrédinger equations. Furthermore, an example of an s-harmonic function,
the harmonic extension and some insight on a fractional version of a classical
conjecture formulated by De Giorgi are presented. Although this paper aims
at gathering some introductory material on the applications of the fractional
Laplacian, some proofs and results are original. Also, the work is self con-
tained, and the reader is invited to consult the rich bibliography for further
details, whenever a subject is of interest.
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1. INTRODUCTION

In the recent years the fractional Laplace operator has received much attention
both in pure and in applied mathematics.

The purpose of these pages is to collect a set of notes that are a result of sev-
eral talks and minicourses delivered here and there in the world (Milan, Cortona,
Pisa, Roma, Santiago del Chile, Madrid, Bologna, Porquerolles, Catania to name a
few). We will present here some mathematical models related to nonlocal equations,
providing some introductory material and examples.

Starting from the basics of the nonlocal equations, we will discuss in detail some
recent developments in four topics of research on which we focused our attention,
namely:

e a problem arising in crystal dislocation (which is related to a classical model
introduced by Peierls and Nabarro),

e a problem arising in phase transitions (which is related to a nonlocal version
of the classical Allen-Cahn equation),

e the limit interfaces arising in the above nonlocal phase transitions (which
turn out to be nonlocal minimal surfaces, as introduced by Caffarelli, Roque-
joffre and Savin), and

e a nonlocal version of the Schrédinger equation for standing waves (as intro-
duced by Laskin).

This set of notes is organized as follows. To start with, in Section 2, we will give
a motivation for the fractional Laplacian (which is the typical nonlocal operator for
our framework), that originates from probabilistic considerations. As a matter of
fact, no advanced knowledge of probability theory is assumed from the reader, and
the topic is dealt with at an elementary level.

In Section 3, we will recall some basic properties of the fractional Laplacian,
discuss some explicit examples in detail and point out some structural inequalities,
that are due to a fractional comparison principle. This part ends with a quite
surprising result, which states that every function can be locally approximated by
functions with vanishing fractional Laplacian (in sharp contrast with the rigidity of
the classical harmonic functions).

In Section 4 we deal with extended problems. It is indeed a quite remarkable
fact that in many occasions nonlocal operators can be equivalently represented as
local (though possibly degenerate or singular) operators in one dimension more.
Moreover, as a counterpart, several models arising in a local framework give rise to
nonlocal equations, due to boundary effects. So, to introduce the extension problem
and give a concrete intuition of it, we will present some models in physics that are
naturally set on an extended space to start with, and will show their relation to the
fractional Laplacian on a trace space. We will also give a detailed justification of
this extension procedure by means of the Fourier transform.

As a special example of problems arising in physics that produce a nonlocal
equation, we consider a problem related to crystal dislocation, present some math-
ematical results that have been recently obtained on this topic, and discuss the
relation between these results and the observable phenomena.
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Sections 5, 6 and 7 present topics of contemporary research. We will discuss in
particular: some phase transition equations of nonlocal type, their limit interfaces,
which (below a critical threshold of the fractional parameter) are surfaces that
minimize a nonlocal perimeter functional, and some nonlocal equations arising in
quantum mechanics.

We remark that the introductory part of these notes is intended not to be sep-
arated from the one which is more research oriented: namely, even the sections
whose main goal is to develop the basics of the theory contain some parts related
to contemporary research trends.

Of course, these notes and the results presented do not aim to be comprehensive
and cannot take into account all the material that would deserve to be included.
Even a thorough introduction to nonlocal (or even just fractional) equations goes
way beyond the purpose of this paper.

Many fundamental topics slipped completely out of these notes: just to name a
few, the topological methods and the fine regularity theory in the fractional cases
are not presented here, the fully nonlinear or singular/degenerate equations are
not taken into account, only very few applications are discussed briefly, important
models such as the quasi-geostrophic equation and the fractional porous media
equation are not covered in these notes, we will not consider models arising in game
theory such as the nonlocal tug-of-war, the parabolic equations are not taken into
account in detail, unique continuation and overdetermined problems will not be
studied here and the link to probability theory that we consider here is not rigorous
and only superficial (the reader interested in these important topics may look, for
instance, at [71, 66, 20, 65, 25, 10, 36, 11, 84, 6, 48, 49, 89]). Also, a complete
discussion of the nonlocal equations in bounded domains is not available here (for
this, we refer to the recent survey [78]). In terms of surveys, collections of results
and open problems, we also mention the very nice website [1], which gets' constantly
updated.

Using a metaphor with fine arts, we could say that the picture that we painted
here is not even impressionistic, it is just naif. Nevertheless, we hope that these
pages may be of some help to the young researchers of all ages who are willing to
have a look at the exciting nonlocal scenario (and who are willing to tolerate the
partial and incomplete point of view offered by this modest observation point).

2. A PROBABILISTIC MOTIVATION

The fractional Laplacian will be the main operator studied in this paper. We
consider a function u: R® — R (which is supposed® to be regular enough) and a
fractional parameter s € (0,1). Then, the fractional Laplacian of u is given by

(-8 ute) = S5 [ 2y e )

dy, (2.1)

1t seems to be known that Plato did not like books because they cannot respond to questions.
He might have liked websites.

2To write (2.1) it is sufficient, for simplicity, to take here u in the Schwartz space S(R™) of
smooth and rapidly decaying functions, or in C2?(R™) n L% (R™). We refer to [37] for a refinement
of the space of definition.
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where C(n, s) is a dimensional® constant.

One sees from (2.1) that (—A)® is an operator of order 2s, namely, it arises from
a differential quotient of order 2s weighted in the whole space. Different fractional
operators have been considered in literature (see e.g. [26, 85, 73]), and all of them
come from interesting problems in pure or/and applied mathematics. We will focus
here on the operator in (2.1) and we will motivate it by probabilistic considerations
(as a matter of fact, many other motivations are possible).

The probabilistic model under consideration is a random process that allows
long jumps (in further generality, it is known that the fractional Laplacian is an
infinitesimal generator of Lévy processes, see e.g. 9] for further details). A more
detailed mathematical introduction to the fractional Laplacian is then presented in
the subsequent Subsection 3.1.

2.1. The random walk with arbitrarily long jumps. We will show here that
the fractional heat equation (i.e. the “typical” equation that drives the fractional
diffusion and that can be written, up to dimensional constants, as diu—+(—A)*u = 0)
naturally arises from a probabilistic process in which a particle moves randomly in
the space subject to a probability that allows long jumps with a polynomial tail.
For this scope, we introduce a probability distribution on the natural num-
bers N* := {1,2,3,---} as follows. If I € N*  then the probability of I is defined to
be .
P(I):=¢, ). TEES
kel
The constant cs is taken in order to normalize P to be a probability measure.

Namely, we take
-1
1
Cs = <Z k|l+2s> ’
keN*

so that we have P(N*) = 1.

Now we consider a particle that moves in R™ according to a probabilistic process.
The process will be discrete both in time and space (in the end, we will formally take
the limit when these time and space steps are small). We denote by 7 the discrete
time step, and by h the discrete space step. We will take the scaling 7 = h%* and
we denote by u(x,t) the probability of finding the particle at the point = at time ¢.

The particle in R™ is supposed to move according to the following probabilistic
law: at each time step 7, the particle selects randomly both a direction v € 0B,
according to the uniform distribution on 0B, and a natural number k£ € N* ac-
cording to the probability law P, and it moves by a discrete space step khv. Notice
that long jumps are allowed with small probability.

Then, if the particle is at time ¢ at the point zg and, following the probability
law, it picks up a direction v € dB; and a natural number k € N* then the particle
at time t + 7 will lie in z¢ + khv.

Now, the probability u(x,t + 7) of finding the particle at x at time ¢ + 7 is the
sum of the probabilities of finding the particle somewhere else, say at = + khv, for
some direction v € 0B; and some natural number k € N* times the probability of
having selected such a direction and such a natural number.

3The explicit value of C(n, s) is usually unimportant. Nevertheless, we will compute its value
explicitly in formulas (3.9) and (3.14). The reason for which it is convenient to divide C(n,s) by
a factor 2 in (2.1) will be clear later on, in formula (3.5).
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(%o + khv,t +7)

(%o, t)

FIGURE 1. The random walk with jumps

This translates into

u(z + khov, t)

C
— = L AH  (v).
AP Jow, e )

u(z,t+7) =

Notice that the factor ¢s/|0B;| is a normalizing probability constant, hence we
subtract u(x,t) and we obtain

Cs u(x + khv,t e
u(z,t + 1) —u(x,t) = R 2* JﬂB (|k|1+29) dH" ' (v) — u(z, t)
keN* vOD1

Cs f u(x + khv,t) — u(x, t) A (v)
keN ~0B1

- 0B, || 1+2s

As a matter of fact, by symmetry, we can change v to —v in the integral above, so
we find that

Cs uw(x — kho,t) —u(z,t) .
u(z,t +7) —u(z,t) = B 2* LB e dH" (v).
keN 1

Then we can sum up these two expressions (and divide by 2) and obtain that

u(z,t + 1) — u(z,t)

_ Cg J 'LL(.’.E + khv,t) + U(x - khva t) - 2u(‘r3 t) dr}_[nfl(,v)
keN* Y O0B1

2|aB1| |k‘1+2$
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Now we divide by 7 = h?®, we recognize a Riemann sum, we take a formal limit
and we use polar coordinates, thus obtaining:

u(z,t +7) — u(z,t)

Oru(x,t) ~
p
__Gsh J u(z + khov,t) + u(xl;k:hv, t) — 2u(zx,t) A ()
2eB1] 23, Lo, R
c +o w(x + rv,t) + u(x — ro, t) — 2u(x,t)
~—° d d PLAH™ T (v) dr
oty Lo e .
s u(z +y,t) +ulr —y,t) — 2u(x,t) i
210B1] Jaw y[2 !

=—cps (—A)u(z,t)

for a suitable ¢, s > 0.
This shows that, at least formally, for small time and space steps, the above
probabilistic process approaches a fractional heat equation.

We observe that processes of this type occur in nature quite often, see in par-
ticular the biological observations in [91, 62] and the mathematical discussions
in [63, 57, 72, 69].

Roughly speaking, let us say that it is not unreasonable that a predator may
decide to use a nonlocal dispersive strategy to hunt its preys more efficiently (or,
equivalently, that the natural selection may favor some kind of nonlocal diffusion):
small fishes will not wait to be eaten by a big fish once they have seen it, so it may
be more convenient for the big fish just to pick up a random direction, move rapidly
in that direction, stop quickly and eat the small fishes there (if any) and then go
on with the hunt. And this “hit-and-run” hunting procedure seems quite related to
that described in Figure 1.

2.2. A payoff model. Another probabilistic motivation for the fractional Lapla-
cian arises from a payoff approach. Suppose to move in a domain {2 according to a
random walk with jumps as discussed in Subsection 2.1. Suppose also that exiting
the domain 2 for the first time by jumping to an outside point y € R™\{2, means
earning uo(y) sestertii. A relevant question is, of course, how rich we expect to
become in this way. That is, if we start at a given point x €  and we denote
by u(z) the amount of sestertii that we expect to gain, is there a way to obtain
information on u?
The answer is that (in the right scale limit of the random walk with jumps
presented in Subsection 2.1) the expected payoff u is determined by the equation
s .
{(*A) u=0 ?n Q, (2.2)
u = ug in RM\Q.

To better explain this, let us fix a point x € 2. The expected value of the payoff at
is the average of all the payoffs at the points Z from which one can reach z, weighted
by the probability of the jumps. That is, by writing & = x + khv, with v € 0By,
k € N* and h > 0, as in the previous Section 2.1, we have that the probability of
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jump is Wﬁ% This leads to the formula
1

Cs u(z + khv) .
UL ) = —(——— —_— d%n v).
") = 1B 2 Joo, e )

By changing v into —v we obtain

Cs u(zx — kho) .
u(z) = —— J ————dH" " (v)
0B k%:* o, |k|'+
and so, by summing up,

Cs u(z — khv) + u(x — khv) 1
2u(z) = dH" " (v).
)= Tom &, Jon EE& )

Since the total probability is 1, we can subtract 2u(z) to both sides and obtain that
Cs j u(z + khv) + u(z — khv) — 2u(x)
keN* Y 0B

_ n—1
0= 8] s dH" ™ (v).

We can now divide by h'*2¢ and recognize a Riemann sum, which, after passing to
the limit as h \{ 0, gives 0 = —(—A)*u(z), that is (2.2).

3. AN INTRODUCTION TO THE FRACTIONAL LAPLACIAN

We introduce here some preliminary notions on the fractional Laplacian and
on fractional Sobolev spaces. Moreover, we present an explicit example of an s-
harmonic function on the positive half-line R, , discuss some maximum principles
and a Harnack inequality, and present a quite surprising local density property of
s-harmonic functions into the space of smooth functions.

3.1. Preliminary notions. We introduce here the fractional Laplace operator,
the fractional Sobolev spaces and give some useful pieces of notation. We also refer
to [40] for a further introduction to the topic.

We consider the Schwartz space of rapidly decaying functions defined as

S(R™) = {f e C*(R") | Yo, B NG, sup |20 ()] < oo} .

For any f € S(R™), denoting the space variable x € R™ and the frequency vari-
able £ € R™, the Fourier transform and the inverse Fourier transform are defined,
respectively, as

F@=Ff©:=| flo)e > da (3.1)
]Rn
and
flo)=F ' fa) = | J&)erm . (3:2)
RTI,

Another useful notion is the one of principal value, namely we consider the definition

u(z) —u(y) : u(z) —u(y)
P.V. ————dy:=1 ——— dy. 3.3
JR" |z — y|nt2s v Re\B, (z) |T — y["T2 Y (3:3)

Notice indeed that the integrand above is singular when y is in a neighborhood
of z, and this singularity is, in general, not integrable (in the sense of Lebesgue):



NONLOCAL DIFFUSION AND APPLICATIONS 8

indeed notice that, near x, we have that u(z) — u(y) behaves at the first order
like Vu(x) - (x — y), hence the integral above behaves at the first order like

Vu(z) - (x —y)

3.4
|IC _ y‘n+28 ( )

whose absolute value gives an infinite integral near = (unless either Vu(xz) = 0
or s <1/2).

The idea of the definition in (3.3) is that the term in (3.4) averages out in a
neighborhood of & by symmetry, since the term is odd with respect to x, and so it
does not contribute to the integral if we perform it in a symmetric way. In a sense,
the principal value in (3.3) kills the first order of the function at the numerator,
which produces a linear growth, and focuses on the second order remainders.

The notation in (3.3) allows us to write (2.1) in the following more compact form:

(—A)ulx) - C(n,s) jn 2u(z) —u(z +y) —u(z —y) dy

2 |y|n+2s
_ C(n,s) limj 2u(z) —u(z + y2) —u(x —y) dy
2 =0 gmB, |y|m+2s
C(n,s) .. f u(z) —u(z +y) f u(z) —u(z —y)
= —~ " lim — Ty + — Py
2 >0 l R\ B, |y[+2s R\ B, |y|"+2s
C(n,s) .. f u(z) —u(n) f u(z) —u(Q)
= 28 i W) = U 4y + W)~ 9% g¢
2 =0 l Re\B. (z) |T — 0|"T2 Re\B. (z) 1T — ¢|"F28
= C(n, ) lim u(z) — u(n) 7

e=0 Jpm g () [T — |28

where the changes of variable 1 := x + y and ( := x — y were used, i.e.

(=A)*u(z) = C(n,s)P.V. ulz) — uly) dy. (3.5)

R |z —y[nt2s
The simplification above also explains why it was convenient to write (2.1) with
the factor 2 dividing C'(n,s). Notice that the expression in (2.1) does not require
the P.V. formulation since, for instance, taking u € L*(R") and locally C?, using a
Taylor expansion of v in By, one observes that

J [2u) —u(z +y) —ulz—y)|

|y|n+2s

| D2u(z)||y|?

B |y|n+23

< Jul gy j Ty f
"\ B1

< lulpe @ J [y| 7" dy + | D*u oo () J ly| 722 dy,
]R"\Bl B4

and the integrals above provide a finite quantity.
Furthermore, for u € S(R™) the fractional Laplace operator can be expressed as
an inverse Fourier transform, as stated in the following lemma.

Lemma 3.1. We have that
(—=A)*u(z) = FH((2n(€])*a(¢)). (3.6)
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Roughly speaking, formula (3.6) characterizes the fractional Laplace operator in
the Fourier space, by taking the s-power of the multiplier associated to the classical
Laplacian operator. Indeed, by inverse Fourier transform, one has that

—Au(z) = —AF1@)(z) = -A N A(e)e2m i€ ag

- [ endra@en= i - 7 (@l alo).

which gives that the classical Laplacian acts in a Fourier space as a multiplier
of (27|¢|)2. From this and Lemma 3.1 it also follows that the classical Laplacian is
the limit case of the fractional one, namely for any u € S(R")

lirq(—A)su =—Au and also lim(—A)’u= —u.

s—0

Let us now prove that indeed the two formulations (2.1) and (3.6) are equivalent.

Proof of Lemma 3.1. Consider identity (2.1) and apply the Fourier transform to
obtain

f((—A)Su(x)> B C(n,s) J‘ .7:<2u(93) —u(r +y) —ulr — y)) ”

2 |y|n+2s
C(n,s) 2 — e2mily _ p—2mily (3.7)
= ’ 0 d .
D) J ; u(€) y[nr2s Yy

1 — cos(27€ - y)
e

- C(n.9)7(©) |
Now, we use the change of variable z = |¢|y and obtain that

J(€) = J-n Md@/

Pl

dy.

n

0 1 —cos % -z
= [¢] fRn 7\4"*25 dz.
Now we use that J is rotationally invariant. More precisely, we consider a rotation

R that sends e; = (1,0,...,0) into &/|¢|, that is Re; = £/|¢], and we call RT its
transpose. Then, by using the change of variables w = Rz we have that
1 —cos(2mRe; - 2)
2s
O e

1 —cos(2nRT 2z -
_ |§|25J‘ cos(2rR' z - e1) p
. ‘RTZ|n+2S

1 — cos(27mwy)
_ 2s
I

Changing variables @ = 27w (we still write w as a variable of integration), we obtain

that
1 — cosws

26) = Crlg)™ [ Lo (3.8)

R |w|’ﬂ+28
Notice that this latter integral is finite. Indeed, integrating outside the ball B; we

have that
f |1—cosw1|d <J 2 0
2= P g _ s
R\ By |w‘n+25 = R\ By ‘w|n+2s ’
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while inside the ball we can use the Taylor expansion of the cosine function and
observe that

J |1—cosw1|d <J |w]|? p <J dw -
B, |w|n+23 = B, ‘w|n+2a = B, |w|n+25 2

Therefore, by taking
-1
1 — cosw;

it follows from (3.8) that

(2r¢)™
J(€) = ZsD
© - S
By inserting this into (3.7), we obtain that

F((=ayu@) = Cn,)a(€) 1) = (2rl¢)*a(©),
which concludes the proof. O

It is worth to point out that the renormalization constant C(n,s) introduced
in (2.1) has now been explicitly computed in (3.9).

Another approach to the fractional Laplacian comes from the theory of semi-
groups (or, equivalently from the fractional calculus arising in subordination iden-
tities). This technique is classical (see [92]), but it has also been efficiently used in
recent research papers (see for instance [34, 90, 22]). Roughly speaking, the main
idea underneath the semigroup approach comes from the following explicit formulas
for the Euler’s function: for any A > 0, one uses an integration by parts and the
substitution 7 = At to see that

—sI'(—=s) =T(1—s)

+00
= J T % Tdr
0
+00
d
= — J T —(e7T —1)dr
0 dT

+oo
- SJ 5 e T — 1) dr
0

+oo
= — s)\*sf t= e M — 1) dt,

0
that is
L [Ty (3.10)
A= J t= 7 (e7M = 1) dt. 3.10
I'(=s) Jo
Then one applies formally this identity to A := —A. Of course, this formal step

needs to be justified, but if things go well one obtains

1 i 1/ tA
AP = s —1)dt,
(A =g | e -
that is (interpreting 1 as the identity operator)

+00
(—A)°u(x) = LL t=5 7 P u(z) — u(x)) dt. (3.11)
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Formally, if U(z,t) := et®u(z), we have that U(z,0) = u(z) and
0

U = a(emu(a;)) = Aet®u(z) = AU,

that is U(z,t) = e*®u(zx) can be interpreted as the solution of the heat equation
with initial datum u. We indeed point out that these formal computations can be
justified:

Lemma 3.2. Formula (3.11) holds true. That is, if u € S(R™) and U = U(z,t) is
the solution of the heat equation

{atUZAU ’i’rLt>O,

U,y =,
then
1 +00
(—A)°u(x) = 7J t 5N U (2, t) — u(w)) dt. (3.12)
I'(=s) Jo
Proof. From Theorem 1 on page 47 in [47] we know that U is obtained by Gaussian

convolution with unit mass, i.e.
UGet) = | Glo=ptudy= [ Glutute—y)dy
n " (3.13)
where G(z,t) := (47Tt)_"/26_|”|2/(4t).

As a consequence, using the substitution 7 := |y|?/(4t),

+0
L t* (U (2, t) — u(x)) dt

_ roo f G (ule — ) ul@)) dy] dt

0 L

- f*oo f ) (drrt) /245 LI/ (40) (ulz - y) — u()) dy] it

0 L

+oor dr
= [ | e (e - ) ) d|
L

_ 92s—1_—n/2 fﬂo [J rEHs—l,-T u(x +y) +|u|($+; y) — 2u(x) dy] dr.
o n y|nt2s

Now we notice that
T, n
J 73t leTdr =T (— + s) ,
0 2
so we obtain that

+ao
L t— U (2, t) — u(z)) dt

2s—1_—nj2p (T w(x +y) +ulz —y) — 2u(z)
92s—1,—n/ F(7+S)Jn P dy

_2257r7”/2F(%+5) CAVule
oy A ),
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This proves (3.12), by choosing C(n,s) appropriately. And, as a matter of fact,
gives the explicit value of the constant C(n, s) as
25T (5 +s) 22T (5 +5)

Cln,s) = /2T (—s)  a20(1—s) (3.14)

where we have used again that I'(1 — s) = —sI'(—s), for any s € (0,1). O

It is worth to point out that the renormalization constant C(n,s) introduced
n (2.1) has now been explicitly computed in (3.14). Notice that the choices
of C(n,s) in (3.9) and (3.14) must agree (since we have computed the fractional
Laplacian in two different ways): for a computation that shows that the quantity
in (3.9) coincides with the one in (3.14), see Theorem 3.9 in [12]. For completeness,
we give below a direct proof that the settings in (3.9) and (3.14) are the same, by
using Fourier methods and (3.10):

Lemma 3.3. For anyneN, n>1, and s € (0,1), we have that
J 1 — cos(27w1) 722 0(1 — 5)

= . 1
|w|nt2s v sF(% +s) (3.15)

Fquivalently, we have that

1 — cosw; 72 (1 — s)
_ = ——“" 3.16
J‘n |ew|mt2s YT QesgT (2 +5) (8.16)

Proof. Of course, formula (3.15) is equivalent to (3.16) (after the substitution @ :=
27w). Strictly speaking, in Lemma 3.1 (compare (2.1), (3.6), and (3.9)) we have
proved that

1 2u(z) —u(z +y) —ulz —y) d
ok y

1 — coswy ly|nt2s
2 J " |w|n+25 w
(3.17)
Similarly, by means of Lemma 3.2 (compare (2.1), (3.12) and (3.14)) we know that

22571 sT (2 +5) J 2u(z) —u(z +y) —u(z —y)
7T"/2F(1 _ 5) n |y|n+23

= F~((2rlel)**a(e))-

dy
(3.18)

1 +o0 S ol
_ mfo =5 (U (2, 1) — u(z)) d.

Moreover (see (3.13)), we have that U(x,t) := Iy  u(z), where
Ti(z) == G(x,t) = (4wt)_"/26_|w|2/(4t).
We recall that the Fourier transform of a Gaussian is a Gaussian itself, namely
Flem™l=l*y = g=mlel®
therefore, for any fixed ¢ > 0, using the substitution y := x//4xt,

v tl) /2J' o—lal?/(at) g—2mia€ g,
)" Rn

_ J e lul? g=2miy- (VATIE) g
R

FT(6)

424042
o 4m el
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As a consequence

= (e~ —1yace).

We multiply by t~°~! and integrate over ¢ > 0, and we obtain
+00

+oo
—s—1 - ~ulz _ —s—1 6747r2t|§\2 o i
FIU e we —aaya = [ 1) dta(e)

= T(=s)(@r?E*)* a(e),
thanks to (3.10) (used here with A := 472|£|?). By taking the inverse Fourier
transform, we have

Jom t N (U, t) — u(x)) dt = T(—s) (2m)* F 1 (|€1* a(€)).
We insert this information into (3.18) and we get
2271sT (5 +5) J 2u(z) — u(z +y) — u(z — y)
FPT(A—5) s M
Hence, recalling (3.17),
2271 sT (2 + 5) f 2u(z) —u(z +y) —u(z —y)
720 (1 — 8) n ly|+2s

dy = (2m)* FH ([ a(€)).-

dy

)

1 2u(z) —u(z +y) —ulr —y) P
9 1 —cosw; d " |y|n+2s

W e
which gives the desired result. O

For the sake of completeness, a different proof of Lemma 3.3 will be given in
Appendix A. There, to prove Lemma 3.3, we will use the theory of special functions
rather than the fractional Laplacian.

3.2. An s-harmonic function. We provide here an explicit example of a function
that is s-harmonic on the positive line R, := (0,+00). Namely, we prove the
following result:

Theorem 3.4. For any x € R, let w(x) := x5 = max{z,0}°. Then

s —cslz|™* ifx <0,
(=A) ws(2) = { 0 ifx >0,

for a suitable constant cs > 0.

At a first glance, it may be quite surprising that the function z% is s-harmonic
in (0, +00), since such function is not smooth (but only continuous) uniformly up
to the boundary, so let us try to give some heuristic explanations for it.

We try to understand why the function «? is s-harmonic in, say, the interval (0, 1)
when s € (0, 1]. From the discussion in Subsection 2.2, we know that the s-harmonic
function in (0, 1) that agrees with 2% outside (0, 1) coincides with the expected value
of a payoff, subject to a random walk (the random walk is classical when s = 1 and
it presents jumps when s € (0,1)). If s = 1 and we start from the middle of the
interval, we have the same probability of being moved randomly to the left and to
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FIGURE 2. An s-harmonic function

the right. This means that we have the same probability of exiting the interval (0, 1)
to the right (and so ending the process at 2 = 1, which gives 1 as payoff) or to the
left (and so ending the process at = 0, which gives 0 as payoff). Therefore the
expected value starting at = 1/2 is exactly the average between 0 and 1, which
is 1/2. Similarly, if we start the process at the point 2 = 1/4, we have the same
probability of reaching the point 0 on the left and the point 1/2 to the right. Since
we know that the payoff at x = 0 is 0 and the expected value of the payoff at x = 1/2
is 1/2, we deduce in this case that the expected value for the process starting at 1/4
is the average between 0 and 1/2, that is exactly 1/4. We can repeat this argument
over and over, and obtain the (rather obvious) fact that the linear function is indeed
harmonic in the classical sense.

FIGURE 3. A payoff model: case s =1 and s € (0, 1)

The argument above, which seems either trivial or unnecessarily complicated in
the classical case, can be adapted when s € (0,1) and it can give a qualitative
picture of the corresponding s-harmonic function. Let us start again the random
walk, this time with jumps, at = 1/2: in presence of jumps, we have the same
probability of reaching the left interval (—oo, 0] and the right interval [1, +c0). Now,
the payoff at (—o0, 0] is 0, while the payoff at [1, +00) is bigger than 1. This implies
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that the expected value at z = 1/2 is the average between 0 and something bigger
than 1, which produces a value larger than 1/2. When repeating this argument over
and over, we obtain a concavity property enjoyed by the s-harmonic functions in
this case (the exact values prescribed in [1,400) are not essential here, it would be
enough that these values were monotone increasing and larger than 1).

In a sense, therefore, this concavity properties and loss of Lipschitz regularity
near the minimal boundary values is typical of nonlocal diffusion and it is due to the
possibility of “reaching far away points”, which may increase the expected payoff.

Now we present a complete, elementary proof of Theorem 3.4. The proof origi-
nated from some pleasant discussions with Fernando Soria and it is based on some
rather surprising integral cancellations. The reader who wishes to skip this proof
can go directly to Subsection 3.3 on page 18.

We start with some preliminary computations.

Lemma 3.5. For any s € (0,1)

f (1+t)3+(1—t)s—2dt+f+°o 1+t 1

0 t1+2s t1+2s S.

Proof. Fixed € > 0, we integrate by parts:

1 s _4\s __

f (1+1t)°+(1—-1) th

R t1+2$

1 ! s s d —2s

=5 [(1+t) (1) —2]%t dt

1[(1+e) +(1—e) -2 Lyt — gt 319
- = 2542 +ff dt

2s 625 R t25

1 1

=5 [o(1) — 2% + 2] + % (Ll(l + ) T dt — f

€

(1—t)s 12 dt),

with o(1) infinitesimal as e \, 0. Moreover, by changing variable f := t/(1 —t), that
is t :=t/(1 + t), we have that

1 +00 N N 5
J (1—t)y 2> dt = J (1+¢)5 25 dt.
€ e/(1—e)

Inserting this into (3.19) (and writing ¢ instead of £ as variable of integration), we
obtain

Jl (1+t)*+(1—1)—2

R t1+2s dt

1 s 1 ! s—1,—2s i s—1,—2s
=%[o(1)—2 +2]+5 (1+t)5 12 dt — (1+t)5 12 at
5 e/(1—¢)
1 1 e/(1—¢) +o0
= —[o(1) —2° + 2] + U (L+ )2 dt — J (1+¢t)s 12 dt].
25 2 e 1

(3.20)

Now we remark that

e/(1—e) e/(1-¢)
f (1+ )2 dt < J (I+e)yte®dt=e(1—e) (1 +e)" !,

€ €
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therefore
e/(1—¢)
lim (1+¢)" 4 25dt = 0.
eNo Jo

So, by passing to the limit in (3.20), we get

1 1 s 1—4)5—2 —25 4+ 92 1 (%
f(+t) (Aot -2, 24 J (L4024t (3.21)

0 1+2s 25 1
Now, integrating by parts we see that
1 +o0 1 +0o0 d
- L+t 2 dt = — 25— (1 +t)5dt
2 L ( ) 2s )i dt( )
s +00 s
= —— t7 (1 + t)* dt.
55 T L (L+1¢)

By plugging this into (3.21) we obtain that

1 +0o0
I+t +(1—-t)° -2 —-2°4+2 2° 1_as s

which gives the desired result. O

From Lemma 3.5 we deduce the following (somehow unexpected) cancellation
property:

Corolary 3.6. Let ws be as in the statement of Theorem 3.4. Then
(—A)°ws(1) = 0.
Proof. The function ¢t — (1 +t)® + (1 —t)® — 2 is even, therefore
1 1
1+1)° 1—-%)° -2 1+1¢)° 1-%)% -2
[T Py LK STV )
~1

‘t|1+23 o t1+2s
Moreover, by changing variable  := —t, we have that
-1 +00 7
1—-t)—2 1+t) -2 -
| e e
ISETIEEE . fl+2s
Therefore
T we (1 + 1) + ws (1 —t) — 2wy (1)
dt
|t|1+2s
-0
-1 s 1 s s +00 s
(1-t)®—2 J 1T+t +(1—-t)®°—2 J (1+t)*—2
= — Yt dt ———dt
J |t[1+2s + . |t[1+2s + L |¢[1+2s
1 +00
(I+t)"+(1—t)°—2 1+t —2
= 2L EsR dt + 2 ) BT dt
B I O e € k) et PO €O )PP .
- 0 t1+2s t+ L t1+2s t= |t

1 +00
P Y B
s 1 t1+25

where Lemma 3.5 was used in the last line. Since

f*m a1
1 tl+2s - 25’




NONLOCAL DIFFUSION AND APPLICATIONS 17

we obtain that

TP ws(1+t s(1—1) —2w,(1
[ R B TPy
. |¢[1+2s
that proves the desired claim. O

The counterpart of Corollary 3.6 is given by the following simple observation:
Lemma 3.7. Let ws be as in the statement of Theorem 3.4. Then
—(=A)’ws(—1) > 0.
Proof. We have that
ws(—1+1) +ws(—1—1) —2ws(=1) = (=1 + )% + (-1 —1)5 >0

and not identically zero, which implies the desired result. O
We have now all the elements to proceed to the proof of Theorem 3.4.

Proof of Theorem 3.4. We let o € {+1,—1} denote the sign of a fixed z € R\{0}.
We claim that

dt

J+°O ws(o(1+t)) + ws(o(1 —t)) — 2ws(o)

. |t|1+23

(3.22)

_ JMO ws(o +t) + ws(o —t) — 2w, (o) i

. e[ +2s
Indeed, the formula above is obvious when z > 0 (i.e. 0 = 1), so we suppose < 0
(i.e. 0 = —1) and we change variable 7 := —t, to see that, in this case,

J+OO ws(o(1+1t)) +ws(o(1 —1)) — 2ws(0o)
dt
. g2
Jﬂo ws(—=1 — 1) + ws(—1 + t) — 2w,(0)
= dt
Y |[L+2s
Jﬂo ws(=1+7) + ws(—1 — 7) — 2w (o)
= dr
. e
O ws(o 4+ 7) + ws(o —T) — 2w, (o)
= dr,
- i

thus checking (3.22).
Now we observe that, for any r € R,

ws(|zlr) = (lz[r)3 = [2['r} = [aws(r).

That is

wg(zr) = ws(olz|r) = || ws(or).
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So we change variable y = tz and we obtain that

T ws(@ + y) + ws(a — y) — 2ws(x)
[y[1+2s

dy

—o0

dt

_ J+OO ws(z(1+ 1) + ws(z(1 —t)) — 2ws(x)
2]t 1+2s

+00 _ _
_ |$|7SJ ws(o(1+1)) +ws(o(1 —1t)) — 2ws(o) dt
. |t[i+2s
+o N
B ws(o + 1) + ws(o —t) — 2ws(o) .
. |1+ 2s

where (3.22) was used in the last line. This says that

s |z[ 7% (=A)*ws(=1) if x <0,
(=A)"ws(2) = { =% (A w,(1)  ifz >0,

hence the result in Theorem 3.4 follows from Corollary 3.6 and Lemma 3.7. g

3.3. Maximum Principle and Harnack Inequality. The Harnack Inequality
and the Maximum Principle for harmonic functions are classical topics in elliptic
regularity theory. Namely, in the classical case, if a nonnegative function is har-
monic in By and r € (0, 1), then its minimum and maximum in B, must always be
comparable (in particular, the function cannot touch the level zero in B,.).

It is worth pointing out that the fractional counterpart of these facts is, in general,
false, as this next simple result shows (see [64]):

Theorem 3.8. There exists a bounded function u which is s-harmonic in By, non-

negative in By, but such that i]gfu = 0.
1

Sketch of the proof. The main idea is that we are able to take the datum of u
outside B; in a suitable way as to “bend down” the function inside B; until it
reaches the level zero. Namely, let M > 0 and we take uy; to be the function
satisfying

(=A)*up =0  in By,

uy =1—M in B3\Ba, (3.23)

Upr = 1 in Rn\<(Bg\BQ) v Bl)
When M = 0, the function ujs is identically 1. When M > 0, we expect up; to
bend down, since the fact that the fractional Laplacian vanishes in By forces the
second order quotient to vanish in average (recall (2.1), or the equivalent formulation
in (3.5)). Indeed, we claim that there exists M, > 0 such that up;, > 0 in By
with ilglf ups, = 0. Then, the result of Theorem 3.8 would be reached by taking u :=
up, - !

To check the existence of such M,, we show that i1191f upy — —o0 as M — +o0.

Indeed, we argue by contradiction and suppose this (lzannot happen. Then, for
any M > 0, we would have that

infuy > —a, (3.24)
B1

for some fixed a € R. We set
upy + M —1

VM = M
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Then, by (3.23),
(—A)*vpr =0 in By,

vy =0 in B3\Bs,
oy =1 in R"\((B3\B2) u By).
Also, by (3.24), for any = € B,
one(z) = —at+M-1
M

By taking limits, one obtains that vy; approaches a function vy, that satisfies

(=A)°vy, =0 in By,

Vop = 0 in B3\Bs,
Voo = 1 in Rn\((Bg\BQ> ) Bl)
and, for any = € By,
v (x) = 1.

In particular the maximum of vy, is attained at some point z, € By, with v (z4) =
1. Accordingly,

Voo (%) — Voo (Y) Voo (Z4) — Ve (y)

0= PV. dy = P.V.
Re |Te —y[ntRe By\By |Ta —y|"T2S
1-0
Bg\BQ |J"* - y|
which is a contradiction. O

The example provided by Theorem 3.8 is not the end of the story concerning the
Harnack Inequality in the fractional setting. On the one hand, Theorem 3.8 is just
a particular case of the very dramatic effect that the datum at infinity may have
on the fractional Laplacian (a striking example of this phenomenon will be given
in Section 3.4). On the other hand, the Harnack Inequality and the Maximum
Principle hold true if, for instance, the sign of the function u is controlled in the
whole of R™.

We refer to [7, 86, 64] and to the references therein for a detailed introduction
to the fractional Harnack Inequality, and to [38] for general estimates of this type.

Just to point out the validity of a global Maximum Principle, we state in detail
the following simple result:

Theorem 3.9. If (—A)*u >0 in By and u = 0 in R™\By, then v > 0 in By.
Proof. Suppose, by contradiction, that the minimal point x, € B; satisfies u(x,) <
0. Since u(z4) is a minimum, if y € By we have that 2u(z,)—u(z«+y)—u(z.—y) < 0.
On the other hand, in R™\ By we have that z, + y € By, hence u(z, £ y) = 0. We
thus have

0< J 2u(zy) —uw(ze +y) —u(ze — y) dy

|y|n+2s

< J 2u(zy) — u(xy ;,Té)g —u(ze —y) dy
R™\ By |yt

2u(w,
< J uﬁil dy < 0.
R™\ By Yl

This leads to a contradiction. O




NONLOCAL DIFFUSION AND APPLICATIONS 20

Similarly to Theorem 3.9, one can prove a Strong Maximum Principle, such as:

Theorem 3.10. If (—A)*u > 0 in By and u = 0 in R"\By, then u > 0 in By,
unless u vanishes identically.

Proof. We observe that we already know that v > 0 in the whole of R™, thanks
to Theorem 3.9. Hence, if u is not strictly positive, there exists x¢g € Bj such
that u(xg) = 0. This gives that

0< J 2u(zo) — u(xo ++Zé) —u(zo — y) dy = _J u(zo +y) ++121(5CO ) dy.
n ly[+2s n ly[+2e

Now both u(zg + y) and u(xo — y) are non-negative, hence the latter integral is less
than or equal to zero, and so it must vanish identically, proving that u also vanishes
identically. O

A simple version of a Harnack-type inequality in the fractional setting can be
also obtained as follows:

Proposition 3.11. Assume that (—A)*u = 0 in By, with u = 0 in the whole of R™.
Then

u(0) = CJ u(z) dz,

B1
for a suitable ¢ > 0.

Proof. Let I' € Cg°(By)2), with I'(x) € [0,1] for any x € R", and I'(0) = 1. We
fix € > 0, to be taken arbitrarily small at the end of this proof and set
n:=u(0)+e>0. (3.25)

We define T'y(x) := 2nT'(xz) — a. Notice that if a > 2n, then T'y(z) < 2n—a <0 <
u(z) in the whole of R™, hence the set {I', < u in R™} is not empty, and we can
define
ay := inf{T, < uin R"}.
aeR

By construction

ay < 21). (3.26)
If a < n then I',(0) = 2n — a > n > u(0), therefore
Ay = 1. (3.27)
Notice that
I'a, < wu in the whole of R™. (3.28)
We claim that
there exists zg € By, such that Iy, (z0) = u(xo). (3.29)

To prove this, we suppose by contradiction that u > 'y, in By, i.e.

p:=min(u — Iy, ) > 0.
Byjo

Also, if x € R™\Bj 5, we have that
w(@) — Ty, (z) = u(x) —2nT(2) + ax = u(z) + ax = ax =1,
thanks to (3.27). As a consequence, for any = € R™,

u(a:) - Fa* (QZ’) = mln{pﬂn} =1y > 0.
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So, if we define ay := as — (ps/2), we have that ay < ay and

Ha P
= — >0
2 2
This is in contradiction with the definition of as and so it proves (3.29).
From (3.29) we have that x¢ € By /s, hence (—A)*u(zg) = 0. Also [(=A)°Tq, (v)]
2n|(=A)*T(z)| < Cn, for any = € R™, therefore, recalling (3.28) and (3.29),

Cn = (=A)Tay,(z0) = (=A) u(xo)

u(r) = Loy (z) = u(x) — Ty () —

Ly —Tq + — — +
= C(n,s)P.V. J [Cay (o) « (T0 |y2|47)l2é [u(z0) — u(zo + )] a
-I
_ PVJ u(zo +y) — ;*(:Co—i-y)dy
R |y‘n+ S

u(zo +y) — Loy (20 +y)
|y|n+2s

= s)P.V. dy.

By (—
Notice now that if y € By (—x ) then |y| < |zo| + 1 < 2, thus we obtain

C(n,s
Cn = EL zs) f [u(zo +y) = Tay (20 +y)] dy.
2nt B1(—xo)

Notice now that Ty, () = 2nI'(x) — asx < 1, due to (3.27), therefore we conclude

that
C(n,s
cn= S8 ([ o+ -zl ).
2 Bl(fwo)

That is, using the change of variable x := x( + y, recalling (3.25) and renaming the
constants, we have

C(u(0) +¢€) =Cn= f u(z) dx,
By
hence the desired result follows by sending ¢ — 0. |

3.4. All functions are locally s-harmonic up to a small error. Here we will
show that s-harmonic functions can locally approximate any given function, with-
out any geometric constraints. This fact is rather surprising and it is a purely
nonlocal feature, in the sense that it has no classical counterpart. Indeed, in the
classical setting, harmonic functions are quite rigid, for instance they cannot have
a strict local maximum, and therefore cannot approximate a function with a strict
local maximum. The nonlocal picture is, conversely, completely different, as the
oscillation of a function “from far” can make the function locally harmonic, almost
independently from its local behavior.
We want to give here some hints on the proof of this approximation result:

Theorem 3.12. Let k € N be fized. Then for any f € C*(By) and any £ > 0 there
exists R > 0 and u € H*(R™) n C*(R™) such that

{(A)ﬁu(z) -0  inB

3.30
u=0 in R"\Bpr (8:30)

and

If = uler@y <e
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Sketch of the proof. For the sake of convenience, we divide the proof is into three
steps. Also, for simplicity, we give the sketch of the proof in the one-dimensional
case. See [13] for the entire and more general proof.

Step 1. Reducing to monomials

Let k € N be fixed. We use first of all the Stone-Weierstrass Theorem and we have
that for any € > 0 and any f € Ck([O, 1]) there exists a polynomial P such that

If = Plora) < e

Hence it is enough to prove Theorem 3.12 for polynomials. Then, by linearity, it is

N
enough to prove it for monomials. Indeed, if P(z) = Z cma™ and one finds an

m=0
s-harmonic function wu,, such that
€
Hum - xm”C’“(le) < m,
N
then by taking u := Z CmUm We have that
m=1
N
[ = Pl < D lemllum — 2™ cr @ <e
m=1

Notice that the function u is still s-harmonic, since the fractional Laplacian is a
linear operator.

Step 2. Spanning the derivatives
We prove the existence of an s-harmonic function in By, vanishing outside a compact
set and with arbitrarily large number of derivatives prescribed. That is, we show

that for any m € N there exist R > r > 0, a point z € R and a function u such that
(—A)’u=01in (x —r,z + 1),

. (3.31)

u = 0 outside (x — R,z + R),

and ]

D’u(x) =0 for any j € {0,...,m — 1},

D™u(z) = 1.
To prove this, we argue by contradiction.

We consider Z to be the set of all pairs (u, ) of s-harmonic functions and points
x € R satisfying (3.31). To any pair, we associate the vector
(u(z), Du(z),...,D™u(z)) e R™*

and take V' to be the vector space spanned by this construction. Suppose by con-
tradiction that a pair (u,z) € Z with the property (3.32) does not exist. Then
the vector (0,...,0,1) € R™*! does not belong to V. This means that the consid-
ered spanned space must be contained in a hyperplane. Hence there exists a vector
(c1,...,cm) € R™T1\{0} that is orthogonal to any vector (u(z), Du(z), ..., D™u(x))
with (u,z) € Z, namely

(3.32)

Z cjDIu(z) = 0.

jsm
A good candidate for the s-harmonic function is 7., as we know from Theorem 3.4:
strictly speaking, this function is not allowed here, since it is not compactly sup-
ported, but let us say that one can construct a compactly supported s-harmonic
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function with the same behavior near the origin. With this slight caveat set aside,
we compute in (0,1)

Dig® =s(s—1)...(s—j+ 1)z
and multiplying the sum with 2™~° (for « # 0) we have that
Z cis(s—1)...(s—j+1)z™ 7 =0.

j<m
But since s € (0,1) the product s(s — 1)...(s — j + 1) never vanishes. Hence
the polynomial is identically null if and only if ¢; = 0 for any j, and we reach
a contradiction. This completes the proof of the existence of a function u that
satisfies (3.31) and (3.32).

Step 3. Rescaling argument and completion of the proof

By Step 2, for any m € N we are able to construct a locally s-harmonic function u
such that u(z) = 2™ +O(x™*1) near the origin (up to a translation). By considering
the blow-up

u(Az) o, m
uy(z) = o = AO(z™ 1)
we have that for A small, u) is arbitrarily close to the monomial ™. As stated in
Step 1, this concludes the proof of Theorem 3.12. O

It is worth pointing out that the flexibility of s-harmonic functions given by The-
orem 3.12 may have concrete consequences. For instance, as a byproduct of The-
orem 3.12, one has that a biological population with nonlocal dispersive attitudes
can better locally adapt to a given distribution of resources (see e.g. Theorem 1.2
in [69]). Namely, nonlocal biological species may efficiently use distant resources
and they can fit to the resources available nearby by consuming them (almost) com-
pletely, thus making more difficult for a different competing species to come into
place.

4. EXTENSION PROBLEMS

We dedicate this part of the paper to the harmonic extension of the fractional
Laplacian. We present at first two applications, the water wave model and the
Peierls-Nabarro model related to crystal dislocations, making clear how the exten-
sion problem appears in these models. We conclude this part by discussing” in detail
the extension problem via the Fourier transform.

The harmonic extension of the fractional Laplacian in the framework considered
here is due to Luis Caffarelli and Luis Silvestre (we refer to [19] for details). The idea
of this extension procedure is that the nonlocal operator (—A)® acting on functions
defined on R™ may be reduced to a local operator, acting on functions defined in the
higher-dimensional half-space Ri“ := R" x (0, +0). Indeed, take U: Rﬁ“ - R
such that U(z,0) = u(z) in R™, solution to the equation

div(ylfQSVU(x,y))zo in R7HL

4Though we do not develop this approach here, it is worth mentioning that extended problems
arise naturally also from the probabilistic interpretation described in Section 2. Roughly speaking,
a stochastic process with jumps in R™ can often been seen as the “trace” of a classical stochastic
process in R™ x [0, +00) (i.e., each time that the classical stochastic process in R™ x [0, +00)
hits R™ x {0} it induces a jump process over R™). Similarly, stochastic process with jumps may
also be seen as classical processes at discrete, random, time steps.
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Then up to constants one has that
lir% (ylfQSﬁyU(amy)) = (—A)u(z).
y—)

4.1. Water wave model. Let us consider the half space R?™! = R™ x (0, +0)
endowed with the coordinates € R™ and y € (0,+00). We show that the half-
Laplacian (namely when s = 1/2) arises when looking for a harmonic function in
Ri“ with given data on R™ x {y = 0}. Thus, let us consider the following local
Dirichlet-to-Neumann problem:

AU =0 in R,
U(z,0) =u(x) forzeR™.

The function U is the harmonic extension of u, we write U = Fu, and define the
operator L as

Lu(z) := —0,U(,0). (4.1)
We claim that
L=1/—A, (4.2)
in other words
L% =—A,.

Indeed, by using the fact that E(Lu) = —0,U (that can be proved, for instance, by
using the Poisson kernel representation for the solution), we obtain that

L2u(z) = L(Lu)(z)

— 0yE(Lu)(z,0)
—0y(—0,U)(x,0)

(OyyU + AU — ALU) (,0)
= AU(z,0) — Au(x)

— — Aufa),

which concludes the proof of (4.2).

One remark in the above calculation lies in the choice of the sign of the square
root of the operator. Namely, if we set Lu(z) := 6,U(z,0), the same computation
as above would give that £2 = —A. In a sense, there is no surprise that a quadratic
equation offers indeed two possible solutions. But a natural question is how to
choose the “right” one.

There are several reasons to justify the sign convention in (4.1). One reason is
given by spectral theory, that makes the (fractional) Laplacian a negative definite
operator. Let us discuss a purely geometric justification, in the simpler n = 1-
dimensional case. We wonder how the solution of problem

(-A¥u=1 in (-1,1),

{ w=0  in R\(-1,1) (4.3)
should look like in the extended variable y. First of all, by Maximum Principle
(recall Theorems 3.9 and 3.10), we have that u is positive® when z € (—1,1) (since
this is an s-superharmonic function, with zero data outside).

5As a matter of fact, the solution of (4.3) is explicit and it is given by (1—22)*, up to dimensional
constants. See [16] for a list of functions whose fractional Laplacian can be explicitly computed
(unfortunately, differently from the classical cases, explicit computations in the fractional setting
are available only for very few functions).
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Then the harmonic extension U in y > 0 of a function w which is positive
in (—1,1) and vanishes outside (—1, 1) should have the shape of an elastic membrane
over the halfplane R? that is constrained to the graph of u on the trace {y = 0}.

FIGURE 4. The harmonic extension

We give a picture of this function U in Figure 4. Notice from the picture that
0,U(z,0) is negative, for any = € (—1,1). Since (—A)*(z) is positive, we deduce
that, to make our picture consistent with the maximum principle, we need to take
the sign of £ opposite to that of 0,U(x,0). This gives a geometric justification
of (4.1), which is only based on maximum principles (and on “how classical harmonic
functions look like”).

Application to the water waves.

We show now that the operator £ arises in the theory of water waves of irrota-
tional, incompressible, inviscid fluids in the small amplitude, long wave regime.

Consider a particle moving in the sea, which is, for us, the space R™ x (0,1),
where the bottom of the sea is set at level 1 and the surface at level 0 (see Figure
5). The velocity of the particle is v: R™ x (0,1) — R™*! and we write v(z,y) =
(vs(z,y),vy(z,y)), where v,: R™ x (0,1) — R™ is the horizontal component and
vy: R™ x (0,1) — R is the vertical component. We are interested in the vertical
velocity of the water at the surface of the sea which we call u(z), namely u(x) :=
vy(z,0).

In our model, the water is incompressible, thus div v = 0 in R™ x (0,1). Further-
more, on the bottom of sea (since water cannot penetrate into the sand), the velocity
has only a non-null horizontal component, hence v, (z,1) = 0. Also, in our model
we assume that there are no vortices: at a mathematical level, this gives that v is
irrotational, thus we may write it as the gradient of a function U: R"*! — R. We
are led to the problem

AU =0 in R+,
o,U(x,1)=0 inR" (4.4)
U(z,0) =u(z) inR"™.

Let £ be, as before, the operator Lu(x) := —d,U(z,0). We solve the problem
(4.4) by using the Fourier transform and, up to a normalization factor, we obtain

that
1€l _ —1él
e e e ~
‘Cu - ]: <|§| e|€‘ + 6_‘£| u(f))
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y=1 reR"

FIGURE 5. The water waves model

Notice that for large frequencies £, this operator is asymptotic to the square root
of the Laplacian:

cu= 5 (jale)) - v=au

The operator £ in the two-dimensional case has an interesting property, that is in
analogy to a conjecture of De Giorgi (the forthcoming Section 5.2 will give further
details about it): more precisely, one considers entire, bounded, smooth, monotone
solutions of the equation Lu = f(u) for given f, and proves that the solution only
depends on one variable. More precisely:

Theorem 4.1. Let f € C*(R) and u be a bounded smooth solution of
{Eu = f(u) inR2

Ozyu >0 in R2.

Then there exist a direction w € S' and a function ug: R — R such that, for any
x € R?,
u(z) = up(z - w).

See Corollary 2 in [35] for a proof of Theorem 4.1 and to Theorem 1 in [35] for
a more general result (in higher dimension).

4.2. Crystal dislocation. A crystal is a material whose atoms are displayed in a
regular way. Due to some impurities in the material or to an external stress, some
atoms may move from their rest positions. The system reacts to small modifications
by pushing back towards the equilibrium. Nevertheless, slightly larger modifications
may lead to plastic deformations. Indeed, if an atom dislocation is of the order of
the periodicity size of the crystal, it can be perfectly compatible with the behavior
of the material at a large scale, and it can lead to a permanent modification.

Suitably superposed atom dislocations may also produce macroscopic deforma-
tions of the material, and the atom dislocations may be moved by a suitable external
force, which may be more effective if it happens to be compatible with the periodic
structure of the crystal.
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These simple considerations may be framed into a mathematical setting, and
they also have concrete applications in many industrial branches (for instance, in
the production of a soda can, in order to change the shape of an aluminium sheet,
it is reasonable to believe that applying the right force to it can be simpler and less
expensive than melting the metal).

It is also quite popular (see e.g. [68]) to describe the atom dislocation motion in
crystals in analogy with the movement of caterpillar (roughly speaking, it is less
expensive for the caterpillar to produce a defect in the alignment of its body and to
dislocate this displacement, rather then rigidly translating his body on the ground).

The mathematical framework of crystal dislocation presented here is related to
the Peierls-Nabarro model, that is a hybrid model in which a discrete dislocation
occurring along a slide line is incorporated in a continuum medium. The total
energy in the Peierls-Nabarro model combines the elastic energy of the material in
reaction to the single dislocations, and the potential energy of the misfit along the
glide plane. The main result is that, at a macroscopic level, dislocations tend to
concentrate at single points, following the natural periodicity of the crystal.

‘ [ J [ ] [ ] [ J [ ] [ ]
[ ] o [ ] ([ ] ([ ] [
[ J [ ] ® @ [ ] [ ]
[ J [ ] [ ] [ ] [ ] [ ]
® ([ ] [ ] [ ] ([ ] [ ]

FI1GURE 6. Crystal dislocation

To introduce a mathematical framework for crystal dislocation, first, we “slice”
the crystal with a plane. The mathematical setting will be then, by symmetry
arguments, the half-plane R? = {(z,y) € R? s.t. y > 0} and the glide line will be
the z-axis. In a crystalline structure, the atoms display periodically. Namely, the
atoms on the z-axis have the preference of occupying integer sites. If atoms move
out of their rest position due to a misfit, the material will have an elastic reaction,
trying to restore the crystalline configuration. The tendency is to move back the
atoms to their original positions, or to recreate, by translations, the natural periodic
configuration. This effect may be modeled by defining v°(z) := v(x,0) to be the
discrepancy between the position of the atom = and its rest position. Then, the
misfit energy is

M%) = f

R

where W is a smooth periodic potential, normalized in such a way that W(u+1) =

W (u) for any v € R and 0 = W(0) < W(u) for any v € (0,1). We also assume that
the minimum of W is nondegenerate, i.e. W”(0) > 0.

W(UO(I)) dz, (4.5)



NONLOCAL DIFFUSION AND APPLICATIONS 28

We consider the dislocation function v(z,y) on the half-plane R?. The elastic
energy of this model is given by

E(v) = %JR

The total energy of the system is therefore

F(v):=EW) + M%) = % L Vv(x,y)‘2 dx dy + -[R W(v(m,O)) dx. (4.7)

Vou(z, y))2 dz dy. (4.6)

2
+

2
i
Namely, the total energy of the system is the superposition of the energy in (4.5),
which tends to settle all the atoms in their rest position (or in another position
equivalent to it from the point of view of the periodic crystal), and the energy
in (4.6), which is the elastic energy of the material itself.

Notice that some approximations have been performed in this construction.
For instance, the atom dislocation changes the structure of the crystal itself: to
write (4.5), one is making the assumption that the dislocations of the single atoms
do not destroy the periodicity of the crystal at a large scale, and it is indeed this
“permanent” periodic structure that produces the potential W.

Moreover, in (4.6), we are supposing that a “horizontal” atom displacement along
the line {y = 0} causes a horizontal displacement at {y = €} as well. Of course,
in real life, if an atom at {y = 0} moves, say, to the right, an atom at level {y =
e} is dragged to the right as well, but also slightly downwards towards the slip
line {y = 0}. Thus, in (4.6) we are neglecting this “vertical” displacement. This
approximation is nevertheless reasonable since, on the one hand, one expects the
vertical displacement to be negligible with respect to the horizontal one and, on
the other hand, the vertical periodic structure of the crystal tends to avoid vertical
displacements of the atoms outside the periodicity range (from the mathematical
point of view, we notice that taking into account vertical displacements would make
the dislocation function vectorial, which would produce a system of equations, rather
than one single equation for the system).

Also, the initial assumption of slicing the crystal is based on some degree of
simplification, since this comes to studying dislocation curves in spaces which are
“transversal” to the slice plane.

In any case, we will take these (reasonable, after all) simplifying assumptions
for granted, we will study their mathematical consequences and see how the results
obtained agree with the physical experience.

To find the Euler-Lagrange equation associated to (4.7), let us consider a per-
turbation ¢ € C§°(R?), with ¢(x) := ¢(z,0) and let v be a minimizer. Then

if(v +e¢)

de =0

e=0

which gives

Vv -Vodrdy + J W (") dz = 0.
R2 R

Consider at first the case in which supp¢n (9]1%3 = ¢, thus ¢ = 0. By the Divergence
Theorem we obtain that

. ¢pAvdrdy =0 for any ¢ € C°(R?),
2
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thus Av =0 in Ri. If supp¢ N 6]1%1 # ( then we have that

0= div(¢Vv) dz dy + J- W (v°) g dx
R2

¢—dm+J W (v°) dx
oRZ

—J —dx+JW’ Yo dx

Z—(m,O) = W/ (4°(z)) for z € R. Hence the
Y

critical points of F are solutions of the problem

for an arbitrary ¢ € CF°(R) therefore

Av(z,y) =0 for x € R and y > 0,
v(z,0) = v0(x) for z € R,
oyv(x,0) = W’ (v(am())) forx e R
and up to a normalization constant, recalling (4.1) and (4.2), we have that
—V—=Av(z,0) = W' (v(z,0)), for any z € R.
The corresponding parabolic evolution equation is d;v(x,0) = —v/—Awv(x,0) —

W' (v(z,0)).

After this discussion, one is lead to consider the more general case of the frac-
tional Laplacian (—A)® for any s € (0,1) (not only the half Laplacian), and the
corresponding parabolic equation

ov = —(=A)’v —W'(v) + o,

where o is a (small) external stress.
If we take the lattice of size € and rescale v and o as

[ 25 t =z
’Ue(t,l') = ’U<61+25,6) and g =& U<61+2576)7

then the rescaled function satisfies

drv. = %( N %W’(va +0) in (0, +0) x R (4.8)

with the initial condition
v(0,2) = v(x) for € R.

To suitably choose the initial condition v?,

that is, the unique solution of the problem

—(=A)u(z) =W'(u) inR,
{u’ > 0 and u(—o0) = 0,u(0) = 1/2,u(+w) = 1. (4.9)

we introduce the basic layer® solution u,

For the existence of such solution and its main properties see [75] and [15]. Fur-
thermore, the solution decays polynomially at +oo (see [42] and [41]), namely

1 T - C
25W”( )|x|1+25 = |x|19

u(z) — H(z) + for any x € R", (4.10)

6As a matter of fact, the solution of (4.9) coincides with the one of a one-dimensional fractional
Allen-Cahn equation, that will be discussed in further detail in the forthcoming Section 5.1.
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where ¥ > 2s and H is the Heaviside step function

1, z>=0

Hz) = {0 r < 0.

We take the initial condition of the solution of (4.8) to be the superposition of
transitions all occurring with the same orientation, i.e. we set

ve(z,0) == W,, (0, z) +2 (g”_m ) (4.11)
0

where 29, ... 2%, are N fixed points.

FIGURE 7. The initial datum when ¢ — 0

The main result in this setting is that the solution v. approaches, as ¢ — 0,
the superposition of steps functions. The discontinuities of the limit function occur
at some points (z;(t)), which move accordingly to the following” dynamical
system

=1,...,.N
=7 o(t,z;) + Z S Rk - in (0, 4+00),
2s|x; — xj[?s+t (4.12)

where

v = (jR(u’F)_l. (4.13)

More precisely, the main result obtained here is the following.

Theorem 4.2. There exists a unique viscosity solution of
1
& = 7(— (—A)S Ve — —W'(w J+o) in(0,+0) xR,
€

625
W” a(0,x) +Z < Z) forzeR

7 The system of ordinary differential equations in (4.12) has been extensively studied in [55].

ve(0, ) =
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such that

H(z — z(t)), (4.14)

li e (t =
lim ve (1, )

OB

Il
-

K2

where (acl(t))Z is solution to (4.12).

=1,..,N

1 1
We refer to [60] for the case s = 3 to [12] for the case s > 3 and [11] for

1
the case s < 3 (in these papers, it is also carefully stated in which sense the limit

in (4.14) holds true).
We would like to give now a formal (not rigorous) justification of the ODE system
in (4.12) that drives the motion of the transition layers.

Justification of ODE system (4.12). We assume for simplicity that the external stress
o is null. We use the notation ~ to denote the equality up to negligible terms in e.
Also, we denote

ui(t, z) :—u(

and, with a slight abuse of notation

%@wy:w<

€

€
By (4.10) we have that the layer solution is approximated by

x — xl(t)) 3 €2 (z — z;(t))
€ 25sW"(0)]x — xi(t)}lws.

wilt,z) ~ H( (4.15)

We use the assumption that the solution v, is well approximated by the sum of N
transitions and write

For that
1
Orve(t, @) = —— D u(t, 2)2(t)
and, since the basic layer solution u is the solution of (4.9), we have that

N
~(=A)ve = = Y (-A) uilt,a)

N

- Sean(=2)
S (=)

N

6% Z W' (u;(t, x)).

i=1
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Now, returning to the parabolic equation (4.8) we have that

_1iuﬁmﬂﬁﬁnéﬂ(iwmm@@)—W(iuﬁmD) (4.16)
i=1 i=1

i=1

Fix an integer k between 1 and N, multiply (4.16) by uj (¢, ) and integrate over R.
We obtain

N
_% ; Zi(1) J-R w)(t, x)uy(t, ) do

- 62&% <i=§11f11§ W’(ui(t,x))u%(t,z) do — J W'( Z ui(t,x))uﬁc(t,x) da:).

R i=1
(4.17)

We compute the left hand side of (4.17). First, we take the £ term of the sum
(i.e. we consider the case i = k). By using the change of variables

:i%gﬁ (4.18)
we have that
Lo [ ) de = - e [ @2( ) g
- — a0 | (P dy (4.19)
_ _nl)
’y )

where y is defined by (4.13).
Then, we consider the i*" term of the sum on the left hand side of (4.17). By
performing again the substitution (4.18), we see that this term is

—1m@X&uxt@uudex—-—1@@X&w(x_xxﬂ)w<$_xuﬂ)dx

€ € € €

= _fijgw<y+f““7;$“”>uKMdy
~ 0,

@—Mﬂ

x
where, for the last equivalence we have used that for € small, v’ (y 42k

is asymptotic to u'(to0) = 0.

We consider the first member on the right hand side of the identity (4.17), and,
as before, take the k*"' term of the sum. We do the substitution (4.18) and have
that

%LWwwmwme=LW%@W@@

— W)
—W(1) - W) =0
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by the periodicity of W. Now we use (4.15), the periodicity of W’ and we perform
a Taylor expansion, noticing that W’ (0) = 0. We see that

"wi(t, ) ~ W' xr — xz(t) _ e (17 _ xl(t))
W' (uilt, @) ~ W <H< ¢ ) QSW”(O)!fﬂxi(t)}mJ
e €28 (J: — fUz(t))
~ W ( 25W”(O)|x _ xi(t)|1+28>

N —€%(z — (1))
)‘1-4-25'

a 25|z — a;(t
Therefore, the i*® term of the sum on the right hand side of the identity (4.17) for
i # k, by using the above approximation and doing one more time the substitution

(4.18), for € small becomes

1LW%waw»%@wwx=1J§£;%%$$lw(??@§d$

_ _J‘ ezs(ey-l-xk(t)—xi(t)) /( )d
R 2s}ey + xp(t) — $i(t)‘1+2s (4.20)

€25 (xp(t) — (1)
( H)zs f u'(y) dy
25| @i (t) — @ ()] R
e (wi(t) — zi(t))
25|z, (t) — (1) T
We also observe that, for € small, the second member on the right hand side of the
identity (4.17), by using the change of variables (4.18), reads

N

1Lw(;mwmﬁwax
- 1 J}R W’ (uk(t,x) + Z ui(t,x))u;(t,x) dx

€ itk
=&W(Mw+zu@+“@;%@ww@My

i#k
T (t) — ;i (T
For € small, u(y + M is asymptotic either to u(+o) = 1 for xp > x;,
or to u(—o) = 0 for x < z;. By using the periodicity of W, it follows that

N
1
Ef W’( Z ui(t,x))u%(t,x) dr = J w’ (u(y))u'(y) dy =W (1) —W(0) =0,
R i=1 R
again by the asymptotic behavior of u. Concluding, by inserting the results (4.19)
and (4.20) into (4.17) we get that

ax(t) _ wx(t) — i)

v 7 28| x () — ()]

14257

which ends the justification of the system (4.12).
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We recall that, till now, in Theorem 4.2 we considered the initial data as a
superposition of transitions all occurring with the same orientation (see (4.11)), i.e
the initial dislocation is a monotone function (all the atoms are initially moved to
the right).

Of course, for concrete applications, it is interesting to consider also the case in
which the atoms may dislocate in both directions, i.e. the transitions can occur
with different orientations (the atoms may be initially displaced to the left or to the
right of their equilibrium position).

To model the different orientations of the dislocations, we introduce a parameter
& € {—1,1} (roughly speaking & = 1 corresponds to a dislocation to the right
and & = —1 to a dislocation to the left).

The main result in this case is the following (see [76]):

Theorem 4.3. There exists a viscosity solution of

1 1
Ove = E(_ (—A)S - —W’( o)+ 0'6) in (0,+0) x R,
ve(0,2) = W” o(0,z) +Z < Z) forxzeR

such that

N
hmv6 t,x) = ZH(@ T —x; (t))),

i=1

where (x;(t)),_, 5 is solution to

. z .

Ty = '7( - gio'(tyl'i) + Z gzé-] W) m (07 +OO)7
J#i

z;(0) = 2.

We observe that Theorem 4.3 reduces to Theorem 4.2 when £ = --- =&, = 1.
In fact, the case discussed in Theorem 4.3 is richer than the one in Theorem 4.2,
since, in the case of different initial orientations, collisions can occur, i.e. it may
happen that z;(T.) = z;+1(T.) for some i € {1,..., N — 1} at a collision time T.

For instance, in the case N = 2, for & =1 and £ = —1 (two initial dislocations
with different orientations) we have that

(4.21)

1+2s
60

if 0then 7T, < ———
hos o (2s + 1)y’

Seé+2s
Y(1 = 2sbo]oe)’

where 6 := 2 — 2 is the initial distance between the dislocated atoms. That is, if
either the external force has the right sign, or the initial distance is suitably small
with respect to the external force, then the dislocation time is finite, and collisions
occur in a finite time (on the other hand, when these conditions are violated, there
are examples in which collisions do not occur).

if By < (25]0]|0) "2 then T, <

This and more general cases of collisions, with precise estimates on the collision
times, are discussed in detail in [76].

An interesting feature of the system is that the dislocation function v, does not
annihilate at the collision time. More precisely, in the appropriate scale, we have
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that v, at the collision time vanishes outside the collision points, but it still preserves
a non-negligible asymptotic contribution exactly at the collision points. A formal
statement is the following (see [70]):

Theorem 4.4. Let N = 2 and assume that a collision occurs. Let x. be the collision
point, namely x. = x1(T.) = xo(T.). Then

lim limov.(t, ) =0 for any x # ., (4.22)
t—T,. e—0
but
limsup ve (¢, z.) = 1. (4.23)
t—T,
e—0

Formulas (4.22) and (4.23) describe what happens in the crystal at the collision
time. On the one hand, formula (4.22) states that at any point that is not the
collision point and at a large scale, the system relaxes at the collision time. On the
other hand, formula (4.23) states that the behavior at the collision points at the
collision time is quite “singular”. Namely, the system does not relax immediately
(in the appropriate scale).

What happens is that a slightly larger time is needed before the system relaxes
exponentially fast: a detailed description of this relaxation phenomenon is presented
in [77]. For instance, in the case N = 2, the dislocation function decays to zero
exponentially fast, slightly after collision, as given by the following result:

Theorem 4.5. Let N = 2, & =1, & = —1, and let ve be the solution given by
Theorem 4.3, with ¢ = 0. Then there exist ¢¢ > 0, ¢ > 0, T, > T, and p. > 0
satisfying

lim T, =T,
e—0
and lim o =0
e—0
such that for any € < ey we have
Te—
[ve(t, z)| < Qeece%*tl , foranyxeR andt = T.. (4.24)

The estimate in (4.24) states, roughly speaking, that at a suitable time T (only
slightly bigger than the collision time T,) the dislocation function gets below a small
threshold p., and later it decays exponentially fast (the constant of this exponential
becomes large when ¢ is small).

The reader may compare Theorem 4.4 and 4.5 and notice that different asymp-
totics are considered by the two results. A result similar to Theorem 4.5 holds for
a larger number of dislocated atoms. For instance, in the case of three atoms with
alternate dislocations, one has that, slightly after collision, the dislocation function
decays exponentially fast to the basic layer solution. More precisely (see again [77]),
we have that:

Theorem 4.6. Let N =3, & = &3 =1, & = —1, and let ve be the solution given
by Theorem /.5, with o = 0. Then there exist eg > 0, ¢ > 0, T}, T? > T, and p. > 0
satisfying

lim T} = lim T2 = T,
e—0 e—0

and liH(l) 0.=0
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and points y. and Z. satisfying
li Ze — Ye| =
lim |Ze —e| =0

such that for any € < ey we have

T — e _et=Th) 1
Ve(t,x) Su | —= | + g™ &F1 | foranyzeR andt =T, (4.25)
€
and
T — Z _ee=12) o
ve(t,z) = u — pce FFL foranyzeR andt = T2, (4.26)
€

where u is the basic layer solution introduced in (4.9).

Roughly speaking, formulas (4.25) and (4.26) say that for times T}, T2 just
slightly bigger than the collision time T, the dislocation function v. gets trapped
between two basic layer solutions (centered at points g. and Z.), up to a small error.
The error gets eventually to zero, exponentially fast in time, and the two basic layer
solutions which trap v, get closer and closer to each other as e goes to zero (that is,
the distance between g, and Z. goes to zero with ¢).

We refer once more to [77] for a series of figures describing in details the results
of Theorems 4.5 and 4.6.

4.3. An approach to the extension problem via the Fourier transform. We
will discuss here the extension operator of the fractional Laplacian via the Fourier
transform approach (see [19] and [90] for other approaches and further results).

Some readers may find the details of this part rather technical: if so, she or he
can jump directly to Section 5 on page 42, without affecting the subsequent reading.

We fix at first a few pieces of notation. We denote points in R+ := R™ x (0, +00)
as X = (z,y), with z € R™ and y > 0. When taking gradients in R’ffl, we
write Vx = (Vy,d,), where V, is the gradient in R”. Also, in R’-", we will often
take the Fourier transform in the variable = only, for fixed y > 0. We also set

a:=1-2se(—1,1).

We will consider the fractional Sobolev space H 5(R™) defined as the set of func-
tions u that satisfy

JulL2@ny + [@le < +oo,

[l = ¢ [MGREGRS

For any u € W, ((0, +00)), we consider the functional

Gu) := LM t“(|u(t)|2 + |u’(t)|2) dt. (4.27)

By Theorem 4 of [85], we know that the functional G attains its minimum among
all the functions u € W5 ((0, +0)) A CO([0, +0)) with u(0) = 1. We call g such
minimizer and

where

Cy:=Gl(g) = min G(u). (4.28)
ueW 1 ((0.40))CO([0,+0))
w(0)=1

The main result of this section is the following.
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Theorem 4.7. Let u € S(R™) and let

Ule,y) = F(@(€) 9(€ly) ) (4.29)
Then
div (y*VU) = 0 (4.30)
for any X = (z,y) e R, In addition,

—f@U’ = Cy(—A)u (4.31)
{y=0}
in R™, both in the sense of distributions and as a pointwise limit.

In order to prove Theorem 4.7, we need to make some preliminary computations.
At first, let us recall a few useful properties of the minimizer function g of the
operator G introduced in (4.27).

We know from formula (4.5) in [35] that

0<g<l, (4.32)
and from formula (2.6) in [35] that
g <0. (4.33)
We also cite formula (4.3) in [85], according to which g is a solution of
g"(t) +at™ g (t) = g(t) (4.34)
for any ¢ > 0, and formula (4.4) in [85], according to which
tl_i)r(% t°q'(t) = —Cy. (4.35)

Now, for any V e W,-! (R we set

oc

[V]a := \/J y | VxV(X)|2dX.
Ry

Notice that [V], is well defined (possibly infinite) on such space. Also, one can
compute [V], explicitly in the following interesting case:
Lemma 4.8. Let 1) € S(R™) and

Ula,y) = F () 9(l¢ly) ). (4.36)
Then

[U]Z = C: [¥]Z. (4.37)

Proof. By (4.32), for any fixed y > 0, the function £ — (&) g(|¢|y) belongs
to L?(R™), and so we may consider its (inverse) Fourier transform. This says that
the definition of U is well posed.

By the inverse Fourier transform definition (3.2), we have that

V.Ule) = Vi | (€ allely) e de
— | iev©aleln e a
= 71 (igv(©g(I¢ly) ) (@),
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Thus, by Plancherel Theorem,

[ watards = | lew©gtell .
R™ R
Integrating over y > 0, we obtain that
+0
f YV UX)PdX = f HEEG U y“\g(lfly)\zdy] dé
Ry R 0
+a0
= [t | [ oo ae |
R 0
+0
~ [l el de

0

+o0
— W2 f lg(t) dt.

(4.38)

Let us now prove that the following identity is well posed

0,U () = F~ (1€l w(€) g/ (€ly)). (4.39)

For this, we observe that
lg'(t)] < Cyt™°. (4.40)
To check this, we define () := t* |¢'(¢)|. From (4.33) and (4.34), we obtain that

(1) = 0129/ (1) = ~1* (¢ (1) + at /(1) = —179(1) < 0.

Hence
. _ . al ./ _
() < lim ~(r) = lim 7°|g'(7)] = Cy,

where formula (4.35) was used in the last identity, and this establishes (4.40).
From (4.40) we have that [¢|[1(€)] 9" (I€ly)] < Cyy™ [§]'~* [1(€)] € L*(R™), and
so (4.39) follows.
Therefore, by (4.39) and the Plancherel Theorem,

| avemPas = | e ol o el as

Integrating over y > 0 we obtain

+o
[ reveora= [ eper U ya\g'uay)fdy] e
R7H! R™ 0

+

= [ rerewer [ eworal a
- J:wt“}g’(t)m . fw 6P [w©)]” d

+0
e j 2]g/ (1) dt.

By summing this with (4.38), and recalling (4.28), we obtain the desired result
[U)? = Cy []%. This concludes the proof of the Lemma. O
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Now, given u € L _(R"), we consider the space X, of all the functions V €

Wli’Cl(IR’}rH) such that, for any z € R", the map y — V(z,y) is in C°([0, +0)),
with V(z,0) = u(z) for any € R™. Then the problem of minimizing [ -], over X,
has a somehow explicit solution.

Lemma 4.9. Assume that u€ S(R™). Then

min [V]2 = [U]2 = Gy [, (1.41)
Ula,y) = F (a6 g(l€ly) ) (4.42)

Proof. We remark that (4.42) is simply (4.36) with ¢ := @, and by Lemma 4.8 we
have that

(U2 = Cilale-
Furthermore, we claim that
UeX,. (4.43)

In order to prove this, we first observe that

C T23 _ t23
o) — gty < S =2

To check this, without loss of generality, we may suppose that T' > ¢ > 0. Hence,
by (4.33) and (4.40),

(4.44)

T
|mﬂ—mm<£|ﬂmm
< Gy JT r~%dr

B Cﬁ (Tlfa _ tlfa)
N 1—a

)

that is (4.44).
Then, by (4.44), for any y, g € (0,4+o0), we see that

Cy |€1#]y** — 5|
2s '

l9(l¢lv) - a(l€19)] <

Accordingly,

U(z,y) — U(z,5)| = ‘]—"1 (ﬁ(f) (9(\§| y) — g(|¢] 37)))‘

N

JRn ‘17(5) (g(lé“\ y) — g(|¢] ﬂ))’d&

C 2s _ ~2s R
<GV jgjace) e,
S R

and this implies (4.43).
Thanks to (4.43) and (4.37), in order to complete the proof of (4.41), it suffices
to show that, for any V' € X,,, we have that

VI = [Vl (4.45)

a
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To prove this, let us take V € X,,. Without loss of generality, since [U], < +o0
thanks to (4.37), we may suppose that [V], < +o. Hence, fixed a.e. y > 0, we
have that
v | OV ewPd <y [ 9xV P de < o,
RVL R’V’L

hence the map z € |V, V(z,y)| belongs to L?(R™). Therefore, by Plancherel Theo-

rem,
f V.V (z,y)|? do = f
Rn n

Now by the Fourier transform definition (3.1)

‘ 2

F(VaV(w,y))©)| de. (4.46)

FVV@)© = | VoV(eye tde

J ) i€V (x,y) e 8 da

hence (4.46) becomes

| Wavrde = [ PIFV @) ©P e (a.47)
R Rn

On the other hand
and thus, by Plancherel Theorem,

f |ayV<x,y>|2dx=f |f(ayV<x,y>)<f>}2d5=f 10,7 (V(2.9)) (€)] de.
R R R

We sum up this latter result with identity (4.47) and we use the notation ¢(¢,y) :=
F(V(x,y))(€) to conclude that

| wxvemkan = | et oel + poenla (@)

Accordingly, integrating over y > 0, we deduce that
V2 - f v (161 1906, + 0,66 v)I?) de dy. (4.49)
+

Let us first consider the integration over y, for any fixed £ € R™\{0}, that we now
omit from the notation when this does not generate any confusion. We set h(y) :=
#(&, €] y). We have that h/(y) = |£|710,¢(¢, €] y) and therefore, using the
substitution t = || y, we obtain

+00
| v (1 ot o) + 20t 0 ay

0

_ |¢|l-a e a =142 -2 —1h?
=l [ e (ot 0 + et o) e

- ml-fw e (1n(0)2 + W (1)2) dt

0
= [€* G(h).
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Now, for any A € R, we show that

min w(0) = AG(w) = A2 Cy. (4.51)
weW 1 ((0,400))ACO([0,+m0))

loc
Indeed, when A = 0, the trivial function is an allowed competitor and G(0) = 0,
which gives (4.51) in this case. If, on the other hand, A\ # 0, given w as above
with w(0) = X we set wy(x) := A lw(xz). Hence we see that wy(0) = 1 and
thus G(w) = A2 G(wy) < N> G(g) = A2y, due to the minimality of g. This
proves (4.51). From (4.51) and the fact that

h(0) = ¢(&,0) = F(V(,0))(€) =a(&),
we obtain that

G(h) = Cyfa(e)

As a consequence, we get from (4.50) that
i a 2 2 2 25 [~y |2
(6106w + 200 ) du > Cs e ace)
Integrating over £ € R™\{0} we obtain that

[ (1 ot + ot ) dedy = i .

| 2

Hence, by (4.49),

which proves (4.45), and so (4.41). O
We can now prove the main result of this section.

Proof of Theorem 4.7. Formula (4.30) follows from the minimality property in (4.41),
by writing that [U]? < [U + ep]? for any ¢ smooth and compactly supported in-
side R’}r“ and any ¢ € R.

Now we take ¢ € C°(R™) (notice that its support may now hit {y = 0}). We
define u, := u + €p, and U, as in (4.29), with @ replaced by @, (notice that (4.29)
is nothing but (4.42)), hence we will be able to exploit Lemma 4.9.

We also set

pal@,y) = F (20 g(lgly) )

We observe that
pa(@,0) = F1(2(6) 9(0)) = F(3(9)) = ¢l) (4.52)
and that
Ue=U+eF (30 g(lgly)) = U + e
As a consequence
U2 = [U2 + 2€J Y'VxU - VxpedX + o(e).
R1+1

Hence, using (4.30), (4.52) and the Divergence Theorem,

(UL = U2 + 2 |

div (gp* y“VXU) dX + o(e)
R

(4.53)

=[U]? —2€J 0 y*0,U dx + o(e).
R™ x {0}
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Moreover, from Plancherel Theorem, and the fact that the image of ¢ is in the reals,

[t = [+ 2¢ | 162 B + ofo
~ [ilo + 2 | 7 (1640(0) ) @) o) da + of)

~ [a]e + 24 (—A) u(x) o(z) dz + ofe).

n

By comparing this with (4.53) and recalling (4.41) we obtain that
[U]2 - QGJ © y*0,U dz + o(e)
R™x{0}

= [U€]2

a

and so
—J py*0,U dx = Cﬁf (=A)°updx,
R™x {0} R™

for any ¢ € C°(R™), that is the distributional formulation of (4.31).
Furthermore, by (4.29), we have that

y*0,U(,y) = F (Ig1a(©) v 9(1€ly)) = F* (11~ 8(0) (Iel)* g€ ly) )
Hence, by (4.35), we obtain

im0, (r,y) = — CoF " (Jea(9))

S (Ge3)
~ — (=A)u(x),

that is the pointwise limit formulation of (4.31). This concludes the proof of The-
orem 4.7. 0

5. NONLOCAL PHASE TRANSITIONS

Now, we consider a nonlocal phase transition model, in particular described
by the Allen-Cahn equation. A fractional analogue of a conjecture of De Giorgi,
that deals with possible one-dimensional symmetry of entire solutions, naturally
arises from treating this model, and will be consequently presented. There is a
very interesting connection with nonlocal minimal surfaces, that will be studied in
Section 6.

We introduce briefly the classical case®. The Allen-Cahn equation has various
applications, for instance, in the study of interfaces (both in gases and solids), in
the theory of superconductors and superfluids or in cosmology. We deal here with a
two-phase transition model, in which a fluid can reach two pure phases (say 1 and

8

8We would like to thank Alberto Farina who, during a summer-school in Cortona (2014), gave
a beautiful introduction on phase transitions in the classical case.
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—1) forming an interface of separation. The aim is to describe the pattern and the
separation of the two phases.

The formation of the interface is driven by a variational principle. Let u(z) be
the function describing the state of the fluid at position x in a bounded region 2.
As a first guess, the phase separation can be modeled via the minimization of the
energy

Eo(u) = JQ W (u(z)) da,

where W is a double-well potential (which is smooth in [—1, 1], positive in (—1,1)
and vanishing at +1). The classical example is

(u? —1)2
E

On the other hand, the functional in & produces an ambiguous outcome, since any
function w that attains only the values +1 is a minimizer for the energy. That is, the
energy functional in & alone cannot detect any geometric feature of the interface.

To avoid this, one is led to consider an additional energy term that penalizes the
formation of unnecessary interfaces. The typical energy functional provided by this
procedure has the form

W(u) := (5.1)

2
E(u) == L W (ulx)) dz + % L \Vu(z)|? d. (5.2)

In this way, the potential energy that forces the pure phases is compensated by
a small term, that is due to the elastic effect of the reaction of the particles. As
a curiosity, we point out that in the classical mechanics framework, the analogue
of (5.2) is a Lagrangian action of a particle, with n = 1, x representing a time
coordinate and wu(x) the position of the particle at time z. In this framework
the term involving the square of the derivative of u has the physical meaning of
a kinetic energy. With a slight abuse of notation, we will keep referring to the
gradient term in (5.2) as a kinetic energy. Perhaps a more appropriate term would
be elastic energy, but in concrete applications also the potential may arise from
elastic reactions, therefore the only purpose of these names in our framework is to
underline the fact that (5.2) occurs as a superposition of two terms, a potential one,
which only depends on u, and one, which will be called kinetic, which only depends
on the variation of u (and which, in principle, possesses no real “kinetic” feature).

The energy minimizers will be smooth functions, taking values between —1 and
1, forming layers of interfaces of e-width. If we send £ — 0, the transition layer will
tend to a minimal surface. To better explain this, consider the energy

J(u) = J%|Vu|2 + W(u)dz, (5.3)

whose minimizers solve the Allen-Cahn equation
— Au+ W' (u) = 0. (5.4)

In particular, for the explicit potential in (5.1), equation (5.4) reduces (up to nor-
malizations constants) to

— Au=u—u. (5.5)
In this setting, the behavior of u in large domains reflects into the behavior of the
rescaled function u.(z) = u(f) in B;. Namely, the minimizers of J in By /. are the
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minimizers of J. in By, where J. is the rescaled energy functional
€ 1
J. () :J £ |Vl + SW (u) da. (5.6)
B, 2 €

‘We notice then that
Je(u) = \V2W (u) |Vu| dx
B,

which, using the Co-area Formula, gives

Je(u) = J_l NV2W () H T ({u = t}) dt.

The above formula may suggest that the minimizers of J. have the tendency to
minimize the (n — 1)-dimensional measure of their level sets. It turns out that
indeed the level sets of the minimizers of J. converge to a minimal surface as ¢ — 0:
for more details see, for instance, [79] and the references therein.

In this setting, a famous De Giorgi conjecture comes into place. In the late 70’s,
De Giorgi conjectured that entire, smooth, monotone (in one direction), bounded
solutions of (5.5) in the whole of R™ are necessarily one-dimensional, i.e., there exist
we S ! and ug : R — R such that

u(z) = ug(w-x) for any xeR"™.

In other words, the conjecture above asks if the level sets of the entire, smooth,
monotone (in one direction), bounded solutions are necessarily hyperplanes, at least
in dimension n < 8.

One may wonder why the number eight has a relevance in the problem above. A
possible explanation for this is given by the Bernstein Theorem, as we now try to
describe.

The Bernstein problem asks on whether or not all minimal graphs (i.e. surfaces
that locally minimize the perimeter and that are graph in a given direction) in R"
must be necessarily affine. This is indeed true in dimensions n at most eight. On
the other hand, in dimension n > 9 there are global minimal graphs that are not
hyperplanes (see e.g. [59]).

The link between the problem of Bernstein and the conjecture of De Giorgi could
be suggested by the fact that minimizers approach minimal surfaces in the limit.
In a sense, if one is able to prove that the limit interface is a hyperplane and that
this rigidity property gets inherited by the level sets of the minimizers u. (which
lie nearby such limit hyperplane), then, by scaling back, one obtains that the level
sets of w are also hyperplanes. Of course, this link between the two problems, as
stated here, is only heuristic, and much work is needed to deeply understand the
connections between the problem of Bernstein and the conjecture of De Giorgi. We
refer to [51] for a more detailed introduction to this topic.

We recall that this conjecture by De Giorgi was proved for n < 3, see [58, 8, 4].
Also, the case 4 < n < 8 with the additional assumption that
lim wu(2,z,) =41, forany a2’ eR"* (5.7)
Tp—>+00
was proved in [80].
For n = 9 a counterexample can be found in [37]. Notice that, if the above limit
is uniform (and De Giorgi conjecture with this additional assumption is known as
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the Gibbons conjecture), the result extends to all possible n (see for instance [50, 51]
for further details).

The goal of the next part of this paper is then to discuss an analogue of these
questions for the nonlocal case and present related results.

5.1. The fractional Allen-Cahn equation. The extension of the Allen-Cahn
equation in (5.4) from a local to a nonlocal setting has theoretical interest and
concrete applications. Indeed, the study of long range interactions naturally leads
to the analysis of phase transitions and interfaces of nonlocal type.

Given an open domain 2 < R™ and the double well potential W (as in (5.1)),
our goal here is to study the fractional Allen-Cahn equation

(=A)’u+W'(u) =0 in Q,

for s € (0,1) (when s = 1, this equation reduces to (5.4)). The solutions are the
critical points of the nonlocal energy

_ 1 [u(@) —u@)*
E(u, Q) .ff W (u(z)) do + Rzn\gc |$_ iz~ o dy. (5.8)

up to normalization constants that we omitted for simplicity. The reader can com-
pare (5.8) with (5.2). Namely, in (5.8) the kinetic energy is modified, in order to
take into account long range interactions. That is, the new kinetic energy still de-
pends on the variation of the phase parameter. But, in this case, far away changes in
phase may influence each other (though the influence is weaker and weaker towards
infinity).

Notice that in the nonlocal framework, we prescribe the function on Q¢ x Q¢ and
consider the kinetic energy on the remaining regions (see Figure 8). The prescription
of values in Q€ x QC reflects into the fact that the domain of integration of the kinetic
integral in (5.8) is R2"\(Q€)2. Indeed, this is perfectly compatible with the local
case in (5.2), where the domain of integration of the kinetic term was simply Q. To
see this compatibility, one may think that the domain of integration of the kinetic
energy is simply the complement of the set in which the values of the functions are
prescribed. In the local case of (5.2), the values are prescribed on 0f2, or, one may
say, in ¢ then the domain of integration of the kinetic energy is the complement
of O, which is simply Q. In analogy with that, in the nonlocal case of (5.8), the
values are prescribed on Q€ x Q¢ = (Q€)2, i.e. outside € for both the variables
x and y. Then, the kinetic integral is set on the complement of (Q€)2, which is
indeed R?™\(0°€)2.

Of course, the potential energy has local features, both in the local and in the
nonlocal case, since in our model the nonlocality only occurs in the kinetic interac-
tion, therefore the potential integrals are set over €2 both in (5.2) and in (5.8).

For the sake of shortness, given disjoint sets A, B € R™ we introduce the notation

|2
u(A, B) JJ |x7 |n+23 dzx dy,

and we write the new kinetic energy in (5.8) as
K(u, Q) = %u(Q, Q) +u(Q, Q). (5.9)

Let us define the energy minimizers and provide a density estimate for the min-
imizers.
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Q x Q°

FIGURE 8. The kinetic energy

Definition 5.1. The function u is a minimizer for the energy £ in Bgr if E(u, BR) <
E(v, BR) for any v such that u = v outside Bg.

The energy of the minimizers satisfy the following uniform bound property on
large balls.

Theorem 5.2. Let u be a minimizer in Bryo for a large R, say R > 1. Then

. 1
R € Br) = 0. (5.10)
More precisely,
CR" if se(51),
E(u, Br) < { CR" 'log R if s=3,
CRn—2s if se (0, %).

Here, C is a positive constant depending only on n,s and W.

1
Notice that for s € (0, 5), R"=25 > R"~! These estimates are optimal (we refer
to [33] for further details).

Proof. We introduce at first some auxiliary functions. Let
P(z) == =1+ 2min {(\x| —R—-1)y, 1}, v(z) := min {u(x),w(x)},
d(x) := max {(R +1—|z|), 1}.

Then, for |z — y| < d(x) we have that

oo - vl < 2522 G.11)
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FIGURE 9. The functions v, v and d

Indeed, if |2| < R, then d(z) = R+ 1 — |z| and
ly| < |z —y|l+ |z| <d(z) + |z| <R +1,

thus ¢(z) = ¥ (y) = 0 and the inequality is trivial. Else, if |x| > R, then d(x) =1,
and so the inequality is assured by the Lipschitz continuity of ¢ (with 2 as the
Lipschitz constant).

Also, we prove that we have the following estimates for the function d:

CR*1 if se (%,1),
f d(z)*dz <{ CR" 'logR if s=1, (5.12)
BRry2 CR"—2s if se (0, %)

To prove this, we observe that in the ring Br,o\Bg, we have d(x) = 1. Therefore,
the contribution to the integral in (5.12) that comes from the ring Bri2\Bg is
bounded by the measure of the ring, and so it is of order R"~!, namely

J d(x)_2s dx = |Br+2\Br| < CRn_l, (5.13)
Br+2\Br

for some C' > 0. We point out that this order is always negligible with respect to
the right hand side of (5.12).

Therefore, to complete the proof of (5.12), it only remains to estimate the con-
tribution to the integral coming from Bpg.

For this, we use polar coordinates and perform the change of variables t = p/(R+
1). In this way, we obtain that

R n—1
dx’2sda::CJ AP
JBR (=) o (R+1—p)*

1
I-m

_C(R+ 1)"—28J 1 — )2 ar

0
-2 == -2
<C(R+1)" f (1—1t)"2dt,
0
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for some C' > 0. Now we observe that
1
_92g .
J(l—t) dt =C if 55»6(()7%)7

L s —9s 0 17ﬁ
L (1—-¢t)~*°dt < —log(l—t)‘ " <logR if s=
0
DY Qs
(1;?;: R+1 < CR2s—1 if se (%7 1)_

0
The latter two formulas and (5.13) imply (5.12).
Now, we define the set

A= fv =y}
and notice that Bry1 € A € Br,2. We prove that for any 2 € A and any y € A€
0(a) — v(y)| < max {Ju(e) — ()], [0(x) ~ v )]} (514)

Indeed, for € A and y € A® we have that
v(z) = (r) <u(z) and o(y) = uly) < ¥(y),
therefore
v(@) —v(y) < u(@) —uy) and w(y) —o(z) < Ply) — (@),
which establishes (5.14). This leads to
v(A, A®) < u(A, AC) + (A, AC). (5.15)
Notice now that
E(u, Bry2) < E(v, Bry2)
since u is a minimizer in Bryo and v = u outside Br42. We have that

1
S(U, BR+2) = — U(BR+2, BR+2) + U(BR+2, B}C%+2) + W(u) dx

Br+2

u(A, A) + u(A, A°)
1
2
+ L‘ W (u) dx + JBR+2\A W (u) dx.

2
1
2
+ = u(Bry2\A, Bry2\A) + u(Bri2\A, Bf 5)

Since u and v coincide on A®, by using the inequality (5.15) we obtain that
0 < g(?}, BR+2) - 5(“7 BR+2)

_ % v(A, A) — %U(A,A) + (A, AC) — u(A, A%) + L (W)~ Ww) dr
< % o(A, A) — %U(A, A) + (A, A) + L (W)~ Ww)dr.

Moreover, v = 1 on A and we have that
3 Ul )+ [ Wde < 5 0(A,A) + 04, A) + [ W) do) = £, 4),
A A

and therefore, since Bg11 € A € Bgyo,

1
5 U(BR+1, BR+1) + W(U) dx < g(w,BR+2). (516)
Bri1



NONLOCAL DIFFUSION AND APPLICATIONS 49

We estimate now E(1, Br42). For a fixed x € Br42 we observe that

[ e-vor,

|I’ _ y|n+25

[ (z) — ¥ (y)]? [ (z) — ¥ (y)|?
— i) = VW i) = VE
Ly@(w) oy YT Ly|>d<w> o =gz Y

1 —n—2s —n—2s
<C<d2f |z —y| 2+2dy+J |z —y| 2dy>7
()% Jja—yl<d(a) jo—yl>d(x)

where we have used (5.11) and the boundedness of ¥. Passing to polar coordinates,
we have that

W(x) - w(y)l2 ( 1 Jd(z) —2s+1 J.OO —92s—1 )
B2 2P gy < C p~ B dp + s=1g
f o — gt ) J N g

= Cd(z)™?
Recalling that ¢(x) = —1 on Bgr41 and W(— ) = 0, we obtain that

2
£, Brsa) = jB fn‘ W@ =W g ge s [ wiw)ae

T — |n+25 Bris

< J d(x)"*dx + J W () dx.
BRri2 Br+2\Br+1

Therefore, making use of (5.12),

CRM1 if se (%,1),
E(W,Brys) < S CR" llog R if s= %, (5.17)
CRn2 it se(0,1).
For what regards the right hand-side of inequality (5.16), we have that
1
= U(BR+1,BR+1) + W(U) dx = 3 U(BR,BR) + U(BR,BR+1\BR)
B (5.18)
+ W (u) dx.
Br
‘We prove now that
w(Br, B, < f d(z)"2 da. (5.19)
Br+2

For this, we observe that if © € Bg, then d(z) = R+ 1 —|z|. So, if x € Bg
and y € B%H, then

[z =yl = [yl - x| = R+ 1 - |z| = d(z).

Therefore, by changing variables z = x — y and then passing to polar coordinates,
we have that

u(Br, B, 1) < JB de |2| 7" dz
R

d(t)

< C dxj p—23—1 dp
BR d(r)

=C d(x) 2% d.
Br
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This establishes (5.19).
Hence, by (5.12) and (5.19), we have that

CR1 if se (5,1),
u(Br, B§.1) < J d(z) " dz <{ CR" 'logR if s=1, (5.20)
BRy2 CR"2s if se (0, %)
We also observe that, by adding u(Bgr, B%, ;) to inequality (5.18), we obtain that
1
5 U(BR+1,BR+1)+ W(u) dJU+U(BR,B%+1)
Brt1
1
> 5 uw(Br, Br) + w(Br, Bry1\Br) + |~ W(u)dz + u(Bg, BS,.1)
Br
=&

E(u, Br) < (¥, Bry2) + u(Br, BS,,).

Combining this with The estimates in (5.17) and (5.20), we obtain the desired
result. g

Another type of estimate can be given in terms of the level sets of the minimizers
(see Theorem 1.4 in [33]).

Theorem 5.3. Let u be a minimizer of £ in Bg. Then for any 61,65 € (—1,1)
such that

U(O) > 91
we have that there exist R and C > 0 such that

{u> 602} n Br| = CR".

if R = R(61,02). The constant C > 0 depends only on n, s and W and R(61,6) is

a large constant that depends also on 61 and 0.

The statement of Theorem 5.3 says that the level sets of minimizers always
occupy a portion of a large ball comparable to the ball itself. In particular, both
phases occur in a large ball, and the portion of the ball occupied by each phase is
comparable to the one occupied by the other.

Of course, the simplest situation in which two phases split a ball in domains with
comparable, and in fact equal, size is when all the level sets are hyperplanes. This
question is related to a fractional version of a classical conjecture of De Giorgi and
to nonlocal minimal surfaces, that we discuss in the following Sections 5.2 and 6.

5.2. A nonlocal version of a conjecture by De Giorgi. In this section we
consider the fractional counterpart of the conjecture by De Giorgi that was discussed
before in the classical case. Namely, we consider the nonlocal Allen-Cahn equation

—(=A)Y’u+W(u)=0 in R,

where W is a double-well potential, and u is smooth, bounded and monotone in
one direction, namely |u| < 1 and 0,,,u > 0. We wonder if it is also true, at least in
low dimension, that u is one-dimensional. In this case, the conjecture was initially
proved for n = 2 and s = 3 in [16]. In the case n = 2, for any s € (0,1), the result
is proved using the harmonic extension of the fractional Laplacian in [15] and [38].
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For n = 3, the proof can be found in [13] for s € [%, 1]. The conjecture is still open

forn =3 and s € [07 %] and for n > 4. Also, the Gibbons conjecture (that is the

De Giorgi conjecture with the additional condition that limit in (5.7) is uniform) is
also true for any s € (0,1) and in any dimension n, see [52].

To keep the discussion as simple as possible, we focus here on the case n = 2 and
any s € (0, 1), providing an alternative proof that does not make use of the harmonic
extension. This part is completely new and not available in the literature. The proof
is indeed quite general and it will be further exploited in [28].

We define (as in (5.9)) the total energy of the system to be

E(u, BRr) = Kr(u) + . W (u)dez, (5.21)

where the kinetic energy is

lu(z) —u(@)?
f |n+2g " dedz, (5.22)

and Qg := R*"\(B§)? = (Bg x BR) U (Br x (R"\Bg)) v (R"\Bg) x Bg). We
recall that the kinetic energy can also be written as

Kn(u) = 2u(Br, Br) + u(Br, B§), (5.23)

where for two sets A, B

u(A, B) JJ x—x|n+2| dz dz. (5.24)

The main result of this section is the following.

Theorem 5.4. Let u be a minimizer of the energy defined in (5.21) in any ball of
R2. Then w is 1-D, i.e. there exist we S' and ug : R — R such that

u(z) = up(w-z) for any ze R

The proof relies on the following estimate for the kinetic energy, that we prove
by employing a domain deformation technique.

Lemma 5.5. Let R > 1, p € C°(By). Also, for any y € R", let
Upily)i=y+ cp(%) er and Vp_(y):=y— cp(%) er. (5.25)
Then, for large R, the maps W 1 and Yr _ are diffeomorphisms on R". Further-

more, if we define ug 4+ () := u(\Ilg,li(x)), we have that

Knluns) + Knlun, )~ 2Kn(u) < 2 Knlu), (5.26)

for some C > 0.

Proof. First of all, we compute the Jacobian of Wx +. For this, we write ¥p 1 ;

to denote the i*® component of the vector ¥p y = (Vg 1, -+, ¥p 4 ,) and we
observe that

Wr+ily) _ 0 ( (y y

— = ——(y* —6)—(517 —0; )(2. 5.27

The latter term is bounded by O(R™!), and this proves that ¥p ; is a diffeomor-
phism if R is large enough.
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For further reference, we point out that if Jg 4 is the Jacobian determinant
of Ug +, then the change of variable

r:=Vr1(y), T:=Vg1(y) (5.28)
gives that
drdz = Jp+(y) Jr+(Y) dydy
1 Y 1
(1 (B)aslB) +o()
1t tan(YY s Loo(Y LY ayag
=1+ Eﬁlgo(R) + Ré’lgo(R) + ( 5 ) dy dy,
thanks to (5.27). Therefore

luns (@) — wr s @F ) o0
|I‘ _ $|n+25
. =1 (z))|? —nd2e
_ |U(\I’R,i($)> — u(\I/R)i(x))| . |z — 72 .
|9 (2) = W (@) (Wl (2) — Uil ()2
n+2s

2\~ (5.29)
) —u@P [ [Pre®) - Vram)

ly — g|m+2s ly — 7|2

(2 fel) £ forel) + () avas

Now, for any y, y € R" we calculate

:My—ﬂ)i w(é)—@(é))ﬁr (5.30)

o(%) - o(§)| < Fleloranly -3, (5.31)

where
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As a consequence

n+2s

2\ T 2
Vr+(y) — Yr+(Y) ni2s n+ 2s
P = (L+ne)™% = 1= ———nz + O(13).

We plug this information into (5.29) and use (5.32) to obtain

lur+(z) —ugr+(2)

|I*f|n+25 dr dz
|uy) — u(@) n+2s 1
= g\ T O

(e hael() = e(2)«

@
_ July) —u@)P? n+2s Lo (u, 1. (¥
= g l———n++ [ % 514,0(*) * Eaﬂp(*)

dy dj.

+0( )

Using this and the fact that

1
77++77—:2 | — :O(i)a
thanks to (5.31), we obtain

ur+(z) —ur 4 (@) | |ug-(2) —ug_(7)

dx dx
|$7ii‘|"+2s |I*f|n+28 T ax
u(y) — u(@)? 1 _
T g 2+O(R2) dy dy.

Thus, if we integrate over Qr we find that

Knur) + Knlun.) = 2Ka() + [[ 0(35) W dz 7.
Qr

This establishes (5.26).

Proof of Theorem 5.4. We organize this proof into four steps.
Step 1. A geometrical consideration

In order to prove that the level sets are flat, it suffices to prove that u is monotone
in any direction. Indeed, if u is monotone in any direction, the level set {u = 0} is

both convex and concave, thus it is flat.

Step 2. Energy estimates

Let ¢ € C°(B1) such that ¢ = 1in By 9, and let e = (1,0). We define as in Lemma

5.5

Vpt(y) =y + w(%) e and Up _(y):=y— w(%) e,
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which are diffeomorphisms for large R, and the functions wug +(x) := u(l’ﬁh (x)).
Notice that

ur,+(y) = u(y) for y € BE (5.33)
ur,+(y) =u(y —e) for y € Brys. (5.34)

By computing the potential energy, it is easy to see that

W(ug +(x))dx + W(ug,—(x))dx —2 W (u(z)) dx
Br Br Br

C
< =5 .
7 s, W(u(x)) dx

Using this and (5.26), we obtain the following estimate for the total energy

C
E(ur,+, Br) + E(ur,~, Br) — 26(u, Br) < 1;3€(u, Br). (5.35)
Also, since up + = u in B%, we have that
g(ua BR) < g(uR,—a BR)
This and (5.35) imply that
C
E(ur,+,Br) — E(u, Br) < ﬁg(% Bg). (5.36)
As a consequence of this estimate and (5.10), it follows that
Jim (5(uR,+, Br) - £(u, BR)) —0. (5.37)

Step 3. Monotonicity

We claim that u is monotone. Suppose by contradiction that u is not monotone.
That is, up to translation and dilation, we suppose that the value of u at the origin
stays above the values of e and —e, with e := (1,0), i.e.

u(0) > u(e) and u(0) > u(—e).
Take R to be large enough, say R > 8. Let now
vg(z) == min{u(z),ug+(z)} and wg(z):=max{u(z), up(z)}. (5.38)

By (5.33) we have that vg = wr = u outside Br. Then, since « is a minimizer in
Bgr and wgr = u outside Bgr, we have that

E(wR,BR) = 5(u, BR) (539)

Moreover, the sum of the energies of the minimum and the maximum is less than
or equal to the sum of the original energies: this is obvious in the local case, since
equality holds, and in the nonlocal case the proof is based on the inspection of the
different integral contributions, see e.g. formula (38) in [75]. So we have that

E(vr, Br) + E(wr, Br) < &(u, Br) + E(ug,+, Br)

hence, recalling (5.39),
E(vr, Br) < E(ur,+, Br). (5.40)



NONLOCAL DIFFUSION AND APPLICATIONS
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We claim that vg is not identically neither u, nor ug 4. Indeed, since u(0) =
ug,+(e) and u(—e) = ug +(0) we have that

vg(0) = min {u(0),ug,+(0)} = min {u(0),u(—e)}
u(—e) =ugr +(0) <u(0) and

min {u(e), ur,+(e)} = min {u(e),u(0)}
= u(e) < u(0) = up, 4+ (e).

By continuity of v and ug 4, we have that

vr(e)

VR = UR,+ < u in a neighborhood of 0 and

41
VR = u < up, 4 in a neighborhood of e. (5.41)

We focus our attention on the energy in the smaller ball Bs. We claim that vg is
not minimal for £(-, Bs). Indeed, if vg were minimal in Bs, then on Bs both vg and
u would satisfy the same equation. However, vg < u in R? by definition and vg = u
in a neighborhood of e by the second statement in (5.41). The Strong Maximum
Principle implies that they coincide everywhere, which contradicts the first line in
(5.41).

Hence vg is not a minimizer in B,. Let then v} be a minimizer of £(-, By), that
agrees with vg outside the ball By, and we define the positive quantity

O := E(vr, Ba) — E(vk, Ba). (5.42)
We claim that
as R goes to infinity, dz remains bounded away from zero. (5.43)
To prove this, we assume by contradiction that

Jim 3r =0, (5.44)

Consider @ to be the translation of u, that is @(x) := u(x — e). Let also
m(z) := min {u(x), u(z)}.
We notice that in Brj, we have that @(z) = ug, 4 (x). This and (5.38) give that
m = vg in Bpys. (5.45)

Also, from (5.41) and (5.45), it follows that m cannot be identically neither u nor
u, and

m < u in a neighborhood of 0 and

m = u in a neighborhood of e. (5.46)

Let z be a competitor for m in the ball By, that agrees with m outside By. We take
a cut-off function ¢ € C°(R™) such that ¢» = 1 in By, 1 = 0 in BIC%/Q. Let

z2r(z) = (@)z(2) + (1 — 9 (@))vr(z).
Then we have that zg = z on Br/4 and
ZR = UR On B}C%/T (5.47)
In addition, by (5.45), we have that z = m = vg in Bgjp\B2. So, it follows that
zr(2) = Y(z)or(z) + (1 — ¥(2))vr(z) = vr(z) = 2(z) on Bgp\Bs.
This and (5.47) imply that zg = vg on BS.
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We summarize in the next lines these useful identities (see also Figure 10).

in By UR,+ = U, M =UVR, Z=2ZR

in Bps\Ba Up4 =1U, Vh=Vp=m=2z=2zp
in Br\Br/2 vh =VUR=2zr, M=2

in BY Up+ =U=UVgp =0Vp =2zr, M=2.

We compute now

FI1GURE 10. Energy estimates

E(m ,Bsy) — E(z, Bs)
= 5(m,BQ) — E(vR,BQ) + 5(UR7BQ) — g(ZR,BQ) + 8(ZR,B2) — 5(2’,32).

By the definition of dg in (5.42), we have that

E(m , By) — &(2, Ba)
= E(m,Bg) — S(UR, Bg) +0r + S(UE, Bg) — g(ZR,BQ) + E(ZR, Bg) — S(Z,BQ).
(5.48)

Using the formula for the kinetic energy given in (5.23) together with (5.24) we
have that
E(m ,Bg) — S(UR, BQ)

1
§m(Bg7Bg) +m BQ,BQ + W
B>

— %’UR<B2,BQ) - UR<B2,BQ) J W(UR(.%‘)) dx.
By
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Since m = vg on By, (recall (5.45)), we obtain

E(m BQ) UR,BQ)
m)|* — |m(x) — vr(y)?
J-BQ dxf .

|£TJ _ y|n+25

Notice now that m and vg are bounded on R™ (since so is w). Also, if z € By
and y € B%/Q we have that |z —y| = |y| — |z| = |y|/2 if R is large. Accordingly,

1
E(m,By) — E(vg, Ba) < C dxj 55 Y < < CR™?, (5.49)
Bs Be,, ly["?

R/2

up to renaming constants. Similarly, zgr = 2z on Bg/; and we have the same bound
E(zr, By) — £(2,By) < CR™2. (5.50)

Furthermore, since v}, is a minimizer for £(-, Bz) and v}, = zr outside of By, we
have that

E(v}, Bs) — E(zR, Bs) < 0.
Using this, (5.49) and (5.50) in (5.48), it follows that
E(m,By) — E(z,By) < CR™?° + 6p.
Therefore, by sending R — +o0 and using again (5.44), we obtain that
E(m, Bs) < &(2, B). (5.51)

We recall that z can be any competitor for m, that coincides with m outside of Bs.
Hence, formula (5.51) means that m is a minimizer for £(-, Bz). On the other hand,
u is a minimizer of the energy in any ball. Then, both u and m satisfy the same
equation in Bs. Moreover, they coincide in a neighborhood of e, as stated in the
second line of (5.46). By the Strong Maximum Principle, they have to coincide on
Bs, but this contradicts the first statement of (5.46). The proof of (5.43) is thus
complete.

Now, since v¥ = vp on BS, from definition (5.42) we have that

6R = S(UR,BR) — 5(U§,BR).

Also, (v, Br) = £(u, Br), thanks to the minimizing property of u. Using these
pieces of information and inequality (5.40), it follows that

Or < E(ur,+,Br) — £(u, Bg).
Now, by sending R — +o0 and using (5.43), we have that
lim 5(uR’+7BR) — S(U,BR) > 0,
R+

which contradicts (5.37). This implies that indeed u is monotone, and this concludes
the proof of this Step.

Step 4. Conclusions
In Step 3, we have proved that u is monotone, in any given direction e. Then, Step
1 gives the desired result. This concludes the proof of Theorem 5.4. g
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We remark that the exponent two in the energy estimate (5.26) is related to the
expansions of order two and not to the dimension of the space. Indeed, the energy
estimates hold for any n. However, the two power in the estimate (5.26) allows us
to prove the fractional version of De Giorgi conjecture only in dimension two. In
other words, the proof of Theorem 5.4 is not applicable for n > 2. One can verify
this by checking the limit in (5.37)

i, (o~ 0.30) <0,

which was necessary for the Proof of Theorem 5.4 in the case n = 2. We know from
Theorem 5.2 that o
lim —¢&(u, Bgr) = 0.
R o0 )
Confronting this result with inequality (5.36)

gﬁ(u, BR)7

E(ur,+,Br) — E(u, Br) < e

we see that we need to have n = 2 in order for the the limit in (5.37) to be zero.

6. NONLOCAL MINIMAL SURFACES

In this section we introduce nonlocal minimal surfaces and focus on two main
results, a Bernstein type result in any dimension and the non-existence of nontrivial
s-minimal cones in dimension 2. Moreover, some boundary regularity results will
be discussed at the end of this chapter.

Let 2 < R™ be an open bounded domain, and ¥ < R™ be a measurable set, fixed
outside Q2. We will consider for s € (0,1/2) minimizers of the H® norm

Ixe(z) — xe(y)
||XE||HS 7J‘nJ.n |3§‘— ‘n+25 dxdy

z)Xxge (y )
) dxd
JJ e —ynt2s v

Notice that only interactions between E and E€ contribute to the norm.

In order to define the fractional perimeter of F in 2, we need to clarify the
contribution of € to the H® norm here introduced. Namely, as F is fixed outside
Q, we aim at minimizing the “C2-contribution” to the norm among all measurable
sets that “vary” inside Q. We consider thus interactions between E N and E€ and
between E\Q and Q\FE, neglecting the data that is fixed outside Q and that does
not contribute to the minimization of the norm (see Figure 11).

We define the interaction I(A, B) of two disjoint subsets of R™ as

dx dy
I(A,B) f j
B |l,7y|n+2s

Xa@)xs(@) (6.1)
dz d
fn J Tz — g2 |n+2s v
Then, one defines the nonlocal s-perimeter functional of E in €2 as
Pery(E,Q) := I[(E n Q, E®) + [(E\Q,Q\E). (6.2)

Equivalently, one may write
Pery(E,Q) = I(E n Q,Q\E) + I(E\Q,Q\E) + I(E\Q,Q\E).
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E°\ 2

E\ 2

FIGURE 11. Fractional Perimeter

Definition 6.1. Let © be an open domain of R™. A measurable set E < R™ 1is

s-manimal in Q if Pers(E,Q) is finite and if, for any measurable set F such that
E\Q = F\Q, we have that

Pers(E,Q) < Pery(F, Q).
A measurable set is s-minimal in R™ if it is s-minimal in any ball B,., where r > 0.

When s — %, the fractional perimeter Per, approaches the classical perimeter,
as proved in [23]. A simple, formal statement, up to renormalizing constants, is the

following:

Theorem 6.2. Let a € (0,1), R > 0 and E be a set with C**-boundary in Bpr.
Then )

lim (5 - s) Per,(E,B,) = Per (E, B,)

s—3

for almost any r € (0, R).

The boundaries of s-minimal sets are referred to as nonlocal minimal surfaces.

In [17] it is proved that s-minimizers satisfy a suitable integral equation (see in
particular Theorem 5.1 in [17]), that is the Euler-Lagrange equation corresponding
to the s-perimeter functional Per,. If F is s-minimal in 2 and 0F is smooth enough,
this Euler-Lagrange equation can be written as

j XE(To +¥y) — xem\e(T0 +¥)
n |y|n+2s

dy =0, (6.3)

for any zg € 2 n JE.
Therefore, in analogy with the case of the classical minimal surfaces, which have
zero mean curvature, one defines the nonlocal mean curvature of E at xy € 0F as

H (o) == f ) —XT;yj ;Oﬁﬁggy) dy. (6.4)

In this way, equation (6.3) can be written as Hj. along 0F.
It is also suggestive to think that the function xYg := xg — xgc averages out to
zero at the points of 0F, if 0F is smooth enough, since at these points the local
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contribution of E compensates the one of E€. Using this notation, one may take
the liberty of writing

s 1 Xe(7o +y) + Xe(ro —Y)
i) = 5] s "
_ 1 xe(zoty)+Xe(@o—y) —2¥e(20) ,
- 5 N |y|n+2s Yy
—(=8)°Xr(0)

()
using the notation of (2.1). Using this suggestive representation, the Euler-Lagrange
equation in (6.3) becomes

(=A)*xg = 0 along JF.

We refer to [2] for further details on this argument.

It is also worth recalling that the nonlocal perimeter functionals find applications
in motions of fronts by nonlocal mean curvature (see e.g. [21] and [27]), problems in
which aggregating and disaggregating terms compete towards an equilibrium (see
e.g. [53] and [39]) and nonlocal free boundary problems (see e.g. [18] and [44]).

In the classical case of the local perimeter functional, it is known that minimal
surfaces are smooth in dimension n < 7. Moreover, if n > 8 minimal surfaces are
smooth except on a small singular set of Hausdorff dimension n — 8. Furthermore,
minimal surfaces that are graphs are called minimal graphs, and they reduce to
hyperplanes if n < 8 (this is called the Bernstein property, which was also discussed
at the beginning of this section). If n > 9, there exist global minimal graphs that
are not affine (see e.g. [59]).

Differently from the classical case, the regularity theory for s-minimizers is still
quite open. We present here some of the partial results obtained in this direction:

Theorem 6.3. In the plane, s-minimal sets are smooth. More precisely:

a) If E is an s-minimal set in Q < R?, then 0E N ) is a C®-curve.

b) Let E be s-minimal in & < R™ and let X < 0F n Q denote its singular set.
Then HY(Xg) = 0 for any d > n — 3.

See [32] for the proof of this results (as a matter of fact, in [32] only C™ reg-
ularity is proved, but then [5] proved that s-minimal sets with C1®-boundary are
automatically C®). Further regularity results of the s minimal surfaces can be

1
found in [24]. There, a regularity theory when s is near — is stated, as we see in

the following Theorem:

1 1
Theorem 6.4. There exists €y € (07 5) such that if s = 5~ €9, then

a) if n < 7, any s-minimal set is of class C*,

b) if n = 8 any s-minimal surface is of class C* except, at most, at countably many
isolated points,

¢) any s-minimal surface is of class C* outside a closed set ¥ of Hausdorff dimen-
sion n — 8.

We will focus the following material on the Bernstein type results, in particular
on the following theorem:
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Theorem 6.5. Let £ = {(x,t) € R" x R s.t. t < u(x)} be an s-minimal graph,
and assume there are no singular cones in dimensions n (that is, if K < R™ is an
s-minimal cone, then K is a half-space). Then u is an affine function (thus E is a

half-space).

To be able to prove Theorem 6.5, we recall some useful auxiliary results. In the
following lemma we state a dimensional reduction result (see Theorem 10.1 in [17]).

Lemma 6.6. Let E = F xR. Then if E is s-minimal if and only if F' is s-minimal.

We define then the blow-up and blow-down of the set E are, respectively

E
Ey:=1limFE, and F,:= lim FE,., where FE,= —.
r—0 r—+00 r

A first property of the blow-up of E is the following (see Lemma 3.1 in [54]).
Lemma 6.7. If Ey, is affine, then so is E.

We recall also a regularity result for the s-minimal surfaces (see [54] and [5] for
details and proof).

Lemma 6.8. Let E be s-minimal. Then:
a) If E is Lipschitz, then E € C%.
b) If Ee CY%, then E € C*™.

We give here a sketch of the proof of Theorem 6.5 (see [54] for all the details).
Sketch of proof of Theorem 6.5. If E < R**! is an s-minimal graph, then the blow-
down E is an s-minimal cone (see Theorem 9.2 in [17] for the proof of this state-
ment). By applying the dimensional reduction argument in Lemma 6.6 we obtain
an s-minimal cone in dimension n. According to the assumption that no singular
s-minimal cones exist in dimension n, it follows that necessarily F., can be singular

only at the origin.
We consider a bump function wy € C*(R, [0, 1]) such that

wo(t) =0 in < 0, i) U <i,+oo>

The blow-down of E is
By = {(z',2n+1) 8.t Tny1 < u(a’)}.
For a fixed o € 0By, let
Fy = {(a', 2p41) s.b. g1 < u (2 + thw(a’)o) — t}
be a family of sets, where ¢t € (0,1) and 8 > 0. Then for § small, we have that
F is below Eg. (6.5)

Indeed, suppose by contradiction that this is not true. Then, there exists 0 — 0
such that

ug (2, + Opw(a))o) — 1 = ug(z},). (6.6)
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But ), € suppw, which is compact, therefore x/, := kETw ). belongs to the support

of w, and w(z,) is defined. Then, by sending k — +o0 in (6.6) we have that
Ueo (20) — 1 2 ucp (),

which is a contradiction. This establishes (6.5).

Now consider the smallest ¢ty € (0,1) for which F}; is below E. Since E is
a graph, then Fj, touches E, from below in one point Xo = (x(,2%_ ), where
xp € suppw. Now, since Fq, is s-minimal, we have that the nonlocal mean curvature
(defined in (6.4)) of the boundary is null. Also, since Fy, is a C? diffeomorphism of
FEy we have that

H;, () ~ to, (6.7)
and there is a region where E,, and F;, are well separated by to, thus
|(Ex\Fy,) N (Bs\Bz)| = cto,
for some ¢ > 0. Therefore, we see that
Hy, (p) = Hy, (p) — Hp(p) = cto.
This and (6.7) give that 6ty = cto, for some ¢ > 0 (up to renaming it). If 6 is small
enough, this implies that ¢ = 0.
In particular, we have proved that there exists 6 > 0 small enough such that, for
any t € (0,1) and any o € 0B, we have that
ug (2 + thw(a')o) — t < ugp(2').
This implies that
g (2 + thw(a’)o) — ux(2')
t0

<

)

SR

hence, letting t — 0, we have that
1
0

We recall now that w = 1 in Bg5\By/5 and o is arbitrary in 0B;. Hence, it follows
that

Vg (2 )w(z')o < =, for any x € R™\{0}, and o € Bj.

|Vug(z)] < -, for any x € Bg5\By/s.

SR

Therefore uq, is globally Lipschitz. By the regularity statement in Lemma 6.8, we
have that uy is C®. This says that u is smooth also at the origin, hence (being
a cone) it follows that Ey is necessarily a half-space. Then by Lemma 6.7, we
conclude that E is a half-space as well. 0

We now prove the non-existence of singular s-minimal cones in dimension 2, as
stated in the next result (from this, the more general statement in Theorem 6.3
follows after a blow-up procedure):

Theorem 6.9. If E is an s-minimal cone in R?, then E is a half-plane.

We remark that, as a combination of Theorems 6.5 and 6.9, we obtain the fol-
lowing result of Bernstein type:

Corolary 6.10. Let E = {(z,t) € R" x R s.t. t < u(z)} be an s-minimal graph,
and assume that n € {1,2}. Then u is an affine function.
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FIGURE 12. The cone K

Let us first consider a simple example, given by the cone in the plane
K= {(x,y) eR?s.t. y* > xQ},
see Figure 12.
Proposition 6.11. The cone K depicted in Figure 12 is not s-minimal in R?.

Notice that, by symmetry, one can prove that K satisfies (6.3) (possibly in the
viscosity sense). On the other hand, Proposition 6.11 gives that K is not s-minimal.
This, in particular, provides an example of a set that satisfies the Euler-Lagrange
equation in (6.3), but is not s-minimal (i.e., the Euler-Lagrange equation in (6.3)
is implied by, but not necessarily equivalent to, the s-minimality property).

Proof of Proposition 6.11. The proof of the non-minimality of K is due to an orig-
inal idea by Luis Caffarelli.

Suppose by contradiction that the cone K is minimal in R?. We add to K a small
square adjacent to the origin (see Figure 13), and call K’ the set obtained. Then
K and K’ have the same s-perimeter. This is due to the interactions considered in
the s-perimeter functional and the unboundedness of the regions. We remark that
in Figure 13 we represent bounded regions, of course, sets A, B,C, D, A’, B, C' and
D’ are actually unbounded.

Indeed, we notice that in the first image, the white square M interacts with the
dark regions A, B, C, D, while in the second the now dark square M interacts with
the regions A’, B’,C’, D', and all the other interactions are unmodified. There-
fore, the difference between the s-perimeter of K and that of K’ consists only of
the interactions I(A, M)+ I(B,M)+ I(C,M)+ I(D,M) —I(A",M) - I(B', M) —
I(C'M)-I(D',M). Bt AuB =AuB and CuD = C"u D (since these
sets are all unbounded), therefore the difference is null, and the s-perimeter of K is
equal to that of K’. Consequently, K’ is also s-minimal, and therefore it satisfies the
Euler-Lagrange equation in (6.3) at the origin. But this leads to a contradiction,
since the the dark region now contributes more than the white one, namely

J Xk (¥) — Xr2\k (Y)
R? ly[>+e

dy > 0.
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FIGURE 13. Interaction of M with A, B,C,D,A’, B",C", D’

Thus K cannot be s-minimal, and this concludes our proof. O

FIGURE 14. Cone in R?

This geometric argument cannot be extended to a more general case (even, for
instance, to a cone in R? made of many sectors, see Figure 14). As a matter of
fact, the proof of Theorem 6.9 will be completely different than the one of Propo-
sition 6.11 and it will rely on an appropriate domain perturbation argument.

The proof of Theorem 6.9 that we present here is actually different than the
original one in [82]. Indeed, in [82], the result was proved by using the harmonic
extension for the fractional Laplacian. Here, the extension will not be used; fur-
thermore, the proof follows the steps of Theorem 5.4 and we will recall here just
the main ingredients.

Proof of Theorem 6.9. The idea of the proof is the following: if £ < R? is an s-
minimal cone, then let £ be a translation of E' in Bgj, which coincides with F

outside Br. Then the difference between the energies of E and E tends to 0 as
R — +oo. This implies that also the energy of E n E is arbitrarily close to the
energy of E. On the other hand if F is not a half-plane, the set E n E can be
modified locally to decrease its energy by a fixed small amount and we reach a
contradiction.
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The details of the proof go as follows. Let

U= XE — XRz\E-
From definition (5.24) we have that
u(Br, Br) = 2I(E n Br, BR\E)
and
w(Br, B}) = [(Br n E, E°\Bg) + I(Br\E, E\Bp),

thus

Pers(E, Br) = Kr(u), (6.8)
where Kr(u) is given in (5.22) and Pers(E, Bg) is the s-perimeter functional defined
n (6.2). Then E is s-minimal if u is a minimizer of the energy Kg in any ball Bg,

with R > 0. We recall the estimate obtained in (5.26), that, combined with the
minimality of u, gives

Kr(up+) — Kr(u) < %]CR(U)

But u is a minimizer in any ball, and by the energy estimate in Theorem 5.2 we
have that

’CR(U’R,Jr) — Kgr(u) < CR™?.
This implies that

Rim Kr(ur+) = Kr(u) = 0. (6.9)

Now, we argue by contradiction, and suppose that E is an s-minimal cone different
from the half-space. Up to rotations, we may suppose that a sector of E has an
angle smaller than 7 and is bisected by es. Thus there exists M > 1 and pe En By
on the ep-axis such that p & e; € R?\E (see Figure 14).

Now we take ¢ € C°(B1), such that ¢(x) = 1in By 5. For R large (say R > 8M),
we define

Upy(y)=y+ @(%) e1.

We point out that, for R large, ¥ . is a diffeomorphism on R2.
Furthermore, we define u},(z) := u(\IJEIJr(a:)) Then
uf(y) = uly —e1) for pe Boy
and  uj(y) = u(y) for p € R?\ Bg.
Let now
vgr(z) := min{u(z), uj(z)} and wr(z) := max{u(z),uf(x)}.
We claim that vg is not identically u nor u}. Indeed
uf(p) =ulp—e1) = (xg — xr2\p)(p—€1) = -1 and
u(p) = (xg — xr2\g)(p) = 1.
On the other hand,
uh(p+er) =ulp)=1 and
u(p+e1) = (xg — xr2\g)(p +e1) = —1.
By the continuity of u and u},, we obtain that

vr = u}, < u in a neighborhood of p (6.10)
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e vR = u < u}, in a neighborhood of p + e;. (6.11)
Now, by the minimality property of u,
Kr(u) < Kr(vg).
Moreover (see e.g. formula (38) in [75]),
Kr(vgr) + Kr(wr) < Kr(u) + Kr(ug).
The latter two formulas give that
Kr(vr) < Kr(uf). (6.12)

We claim that
vg 1s not minimal for Kaops (6.13)

with respect to compact perturbations in Bsps. Indeed, assume by contradiction
that vr is minimal, then in Bsjs both vy and u would satisfy the same equation.
Recalling (6.11) and applying the Strong Maximum Principle, it follows that u = vg
in Baps, which contradicts (6.10). This establishes (6.13).

Now, we consider a minimizer u} of Kaps among the competitors that agree
with vg outside Bsys. Therefore, we can define

5R = ’CQM(’UR) — ]CQM(U,E)
In light of (6.13), we have that dg > 0.
The reader can now compare Step 3 in the proof of Theorem 5.4. There we

proved that
dr remains bounded away from zero as R — +c0. (6.14)

Furthermore, since u};, and vgr agree outside Ba)s we obtain that
Kr(u}) +0r = Kr(vg).
Using this, (6.12) and the minimality of u, we obtain that
0r = Kr(vr) — Kr(u}) < Kr(ugr,+) — Kr(u).

Now we send R to infinity, recall (6.9) and (6.14), and we reach a contradiction.
Thus, F is a half-space, and this concludes the proof of Theorem 6.9. O

As already mentioned, the regularity theory for s-minimal sets is still widely
open. Little is known beyond Theorems 6.3 and 6.4, so it would be very interesting
to further investigate the regularity of s-minimal surfaces in higher dimension and
for small s.

Regarding this problem, let us mention the recent papers [31] and [32]. Among
other very interesting results, it is proved there that suitable singular cones of
symmetric type are unstable up to dimension 6 but become stable in dimension 7
for small s (these cones can be seen as the nonlocal analogue of the Lawson cones in
the classical minimal surface theory, and the stability property is in principle weaker
than minimality, since it deals with the positivity of the second order derivative of
the functional).

This phenomenon may suggest the conjecture that the s-minimal surfaces are
always smooth up to dimension 6 but may develop singularity in dimension 7 and
higher.

In [32], interesting examples of surfaces with vanishing nonlocal mean curvature
are provided. Remarkably, the surfaces in [32] are the nonlocal analogue of the
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catenoids, but, differently from the classical case (in which catenoids grow logarith-
mically), they approach a singular cone at infinity.

See also [14] for the construction of surfaces with constant mean curvature with
the structure of onduloids, and [14] and [29] for the proof that bounded surfaces
with constant mean curvature are necessarily spheres (this is the analogue of a
celebrated result by Alexandrov for surfaces of constant classical mean curvature).

The boundary regularity of the nonlocal minimal surfaces is also a very inter-
esting, and surprising, topic. Indeed, differently from the classical case, nonlocal
minimal surfaces do not always attain boundary data in a continuous way (not
even in low dimension). A possible boundary behavior is, on the contrary, a com-
bination of stickiness to the boundary and smooth separation from the adjacent
portions. Namely, the nonlocal minimal surfaces may have a portion that sticks at
the boundary and that separates from it in a C' %“—way.

As an example, we can consider, for any § > 0, the spherical cap

Ks := (B145\B1) 0 {z, < 0},
and obtain the following stickiness result:

Theorem 6.12. There exists 5y > 0, depending on n and s, such that for any 0 €
(0,80], we have that the s-minimal set in By that coincides with Ks outside By
is K itself.

That is, the s-minimal set with datum Ks outside By is empty inside Bi.

Other stickiness examples occur at the sides of slabs in the plane. For instance,
given M > 1, one can consider the s-minimal set Ej; in (—1,1) x R with datum
outside (—1,1) x R given by the “jump” set Jys := J;,; U J;;, where

Jy = (=00, —1] x (=00, —M)
and Jip =1, +m) x (—oo, M).
Then, if M is large enough, the minimal set Fj; sticks at the boundary of the slab:

Theorem 6.13. There exist M, > 0, ¢, € (0,1), depending on s, such that if M >
M, then

[-1,1) x [e,M, M] < Ef; (6.15)
and (—1,1] x [-M, —c,M] S Ey. (6.16)

For the proof of Theorems 6.12 and 6.13, and other results on the boundary
behavior of nonlocal minimal surfaces, see [47].

To conclude this section, we make a remark on the connection between solutions
of the fractional Allen-Cahn equation and s-minimal surfaces. Namely, a suitably
scaled version of the functional in (5.8) I'-converges to either the classical perimeter
or the nonlocal perimeter functional, depending on the fractional parameter s. The
I’-convergence is a type of convergence of functionals that is compatible with the
minimization of the energy, and turns out to be very useful when dealing with
variational problems indexed by a parameter. This notion was introduced by De
Giorgi, see e.g. [33] for details.

In the nonlocal case, some care is needed to introduce the ‘“right” scaling of the
functional, which comes from the dilation invariance of the space coordinates and
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possesses a nontrivial energy in the limit. For this, one takes first the rescaled
energy functional

Jo(u, Q) = e K(u, Q) + J W(u)dz.
Q
Then, one considers the functional
e J(u, Q) if s € (0, 1/2),
F.(u,Q) := < |eloge| 7t Jo(u, Q) if s =1/2,

et (u, Q) if se (1/2, 1).

The limit functional of F. as e — 0 depends on s. Namely, when s € (0,1/2),
the limit functional is (up to dimensional constants that we neglect) the fractional
perimeter, i.e.

F(u,Q) = {

On the other hand, when s € [1/2,1), the limit functional of F. is (again, up to
normalizing constants) the classical perimeter, namely

F(u,) := {
That is, the following limit statement holds true:

Theorem 6.14. Let s € (0, 1). Then, F. T'-converges to F, as defined in ei-
ther (6.17) or (6.18), depending on whether s € (0,1/2) or s € [1/2,1).

Pers(E,Q) if ulg = xg — Xge, for some set E < Q

400 otherwise. (6.17)

Per(E,Q) if ulg = xg — xEec, for some set E < Q

+0 otherwise, (6.18)

For precise statements and further details, see [31]. Additionally, we remark
that the level sets of the minimizers of the functional in (5.8), after a homogeneous
scaling in the space variables, converge locally uniformly to minimizers either of the
fractional perimeter (if s € (0,1/2)) or of the classical perimeter (if s € [1/2,1)):
that is, the “functional” convergence stated in Theorem 6.14 has also a “geometric”
counterpart: for this, see Corollary 1.7 in [33].

One can also interpret Theorem 6.14 by saying that a nonlocal phase transition
possesses two parameters, € and s. When ¢ — 0, the limit interface approaches a
minimal surface either in the fractional case (when s € (0,1/2)) or in the classical
case (when s € [1/2,1)). This bifurcation at s = 1/2 somehow states that for lower
values of s the nonlocal phase transition possesses a nonlocal interface in the limit,
but for larger values of s the limit interface is characterized only by local features (in
a sense, when s € (0,1/2) the “surface tension effect” is nonlocal, but for s € [1/2,1)
this effect localizes).

It is also interesting to compare Theorems 6.2 and 6.14, since the bifurcation
at s = 1/2 detected by Theorem 6.14 is perfectly compatible with the limit behavior
of the fractional perimeter, which reduces to the classical perimeter exactly for this
value of s, as stated in Theorem 6.2.

7. NONLOCAL NONLINEAR SCHRODINGER TYPE EQUATION

The type of problems introduced in this section are connected to solitary solutions
of nonlinear dispersive wave equations (such as the Benjamin-Ono equation, the
Benjamin-Bona-Mahony equation and the fractional Schrédinger equation).
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Let n = 2 be the dimension of the reference space, s € (0,1) be the fractional
parameter, and € > 0 be a small parameter. We consider the so-called fractional
Sobolev exponent

2
o n2 forn >3, orn=2and se (0,1/2)
=4 n—2s

+o0 forn=1and s e (0,1/2]

and introduce the following nonlocal nonlinear Schrédinger equation

€25 (=AY u+u = uP %n QcR” (7.1)
u=0 m R”\Q,
2
in the subcritical case p € (1,2} — 1), namely when p € { 1, o 23 .
n — 48

This equation arises in the study of the fractional Schrédinger equation when
looking for standing waves. Namely, the fractional Schrédinger equation considers
solutions ¥ = ¥(z,t) : R” x R — C of

ihioy U = (B**(=A)* + V)V, (7.2)
where s € (0,1), 7 is the reduced Planck constant and V = V(x,t,|¥|) is a po-
tential. This equation is of interest in quantum mechanics (see e.g. [67] and the

appendix in [30] for details and physical motivations). Roughly speaking, the quan-
tity |W(x,t)|? do dt represents the probability density of finding a quantum particle
in the space region dz and in the time interval dt.

The simplest solutions of (7.2) are the ones for which this probability density is
independent of time, i.e. |¥(z,t)| = u(z) for some u : R™ — [0, +00). In this way,
one can write ¥ as u times a phase that oscillates (very rapidly) in time: that is
one may look for solutions of (7.2) of the form

(x,t) := u(z) e
for some frequency w € R. Choosing V = V(|¥|) = —|¥[P~! = —uP~! a substitu-
tion into (7.2) gives that
(h25(—A)su + wu — up) e — B2 (—A)*W — il U + VI = 0,

which is (7.1) (with the normalization convention w := 1 and € := h).

The goal of this section is to construct solutions of problem (7.1) that concentrate
at interior points of the domain ) for sufficiently small values of e. We perform a
blow-up of the domain, defined as

Q@—lﬂ—{%xeﬁ}
€ €

We can also rescale the solution of (7.1) on .,
ue(z) = u(ex).
The problem (7.1) for u. reads
(=A)u+u=u? ?n Q. (73)
u=0 in RM\Q,.

When ¢ — 0, the domain €2, invades the whole of the space. Therefore, it is also
natural to consider (as a first approximation) the equation on the entire space

(—A)°u+u =uP in R™. (7.4)
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The first result that we need is that there exists an entire positive radial least energy
solution w € H*(R™) of (7.4), called the ground state solution. Here follow some
relevant results on this. The interested reader can find their proofs in [56].

(1) The ground state solution w € H*(R™) is unique up to translations.
(2) The ground state solution w € H*(R™) is nondegenerate, i.e., the derivatives
D;w are solutions to the linearized equation

(—=A)*Z + Z = pzP 1. (7.5)

(3) The ground state solution w € H*(R™) decays polynomially at infinity,
namely there exist two constants «, 5 > 0 such that

afz| =2 < u(z) < |+,

Unlike the fractional case, we remark that for the (classical) Laplacian, at infinity
the ground state solution decays exponentially fast.

The main theorem of this section establishes the existence of a solution that con-
centrates at interior points of the domain for sufficiently small values of €. This con-
centration phenomena is written in terms of the ground state solution w. Namely,
the first approximation for the solution is exactly the ground state w, scaled and
concentrated at an appropriate point £ of the domain. More precisely, we have:

Theorem 7.1. If € is sufficiently small, there exist a point £ € Q and a solution U,
of the problem (7.1) such that

Uc(zx) — w(

and dist(§,00) = § > 0. Here, C and & are constants independent of € or Q, and
the function w is the ground state solution of problem (7.4).

&
€

2
)‘ < CEnJr s,

The concentration point £ in Theorem 7.1 is influenced by the global geometry
of the domain. On the one hand, when s = 1, the point £ is the one that maximizes
the distance from the boundary. On the other hand, when s € (0, 1), such simple
characterization of £ does not hold anymore: in this case, £ turns out to be asymp-
totically the maximum of a (complicated, but rather explicit) nonlocal functional:
see [30] for more details.

We state here the basic idea of the proof of Theorem 7.1 (we refer again to [30]
for more details).

Sketch of the proof of theorem 7.1. The proof makes use of a Lyapunov-Schmidt
procedure. Namely, rather than looking for the solution in an infinite-dimensional
functional space, one decomposes the problem into two orthogonal subproblems.
One of these problem is still infinite-dimensional, but it has the advantage to bifur-
cate from a known object (in this case, a translation of the ground state). Solving
this auxiliary subproblem does not provide a true solution of the original problem,
since a leftover in the orthogonal direction may remain. To kill this remainder
term, one solves a second subproblem, which turns out to be finite-dimensional
(in our case, this subproblem is set in R™, which corresponds to the action of the
translations on the ground state).

A structural advantage of the problem considered lies in its variational structure.
Indeed, equation (7.3) is the Euler-Lagrange equation of the energy functional

I (u) = %fg ((—A)su(x) + u(m))u(m) dx — p% fQ uP Y (z) dx (7.6)
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for any w € H{(Q) = {u € H*(R") s.t. u = 0 a.e. in R"\Q.}. Therefore, the
problem reduces to finding critical points of I.

To this goal, we consider the ground state solution w and for any £ € R™ we let
we = w(z —§). For a given & € Q a first approximation @, for the solution of
problem (7.3) can be taken as the solution of the linear problem

(77A)8ﬂ5 + g = wy ?n Q, (7.7)
g =0 in R™\2..

The actual solution will be obtained as a small perturbation of % for a suitable
point £ = £(e). We define the operator £ := (—A)® + I, where [ is the identity and
we notice that £ has a unique fundamental solution that solves

LI = (50 in R™.

The Green function G, of the operator £ in 2. satisfies

LGe(z,y) = 0y(x) ifxe, (78)

Ge(z,y) =0 if x € R™\Q.. '

It is convenient to introduce the regular part of G, which is often called the Robin
function. This function is defined by

H(z,y) :=T(x —y) — Ge(x,y) (7.9)
and it satisfies, for a fixed y € R™,
LH(z,y)=0 ?f x € Q,, (7.10)
H (z,y)=T(xr—y) ifxeR™"\Q..
Then
R
and by (7.8)

e (1) = L Te(y)LGe(z,y) dy.

The operator L is self-adjoint and thanks to the above identity and to equation

(7.7) it follows that
- | cucGetamdy

- | wtt)Ge v ay
Qe

So, we use (7.9) and we obtain that

Te(w) = | Wl =)y | wl)H o) dy

Qe

Now we notice that, since we is solution of (7.4) and T is the fundamental solution
of L, we have that

J we (y)T'( ﬁws —y)dy

y) LT (x —y) dy

%%

S
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Therefore we have obtained that
wew) = welo) ~ | W@l -y dy- [ wf@Hydye (1)

R™\Q. Q.
Now we can insert (7.11) into the energy functional (7.6) and expand the errors
in powers of e. For dist(,0€.) > — with ¢ fixed and small, the energy of @ is a

€
perturbation of the energy of the ground state w and one finds (see Theorem 4.1
in [30]) that
1

Le(Tg) = I(w) + SH(E) + O(ent49), (7.12)

where

H(©) = | | Heel@utty) dody

and [ is the energy computed on the whole space R", namely

I(u) = lf ((—A)Su(m) + u(x))u(m) do—— [ wr@)de.  (1.13)
2 Jrn p+1 Jgn
In particular, I.(u:) agrees with a constant (the term I(w)), plus a functional over
a finite-dimensional space (the term H.(£), which only depends on £ € R™), plus a
small error.
We remark that the solution %, of equation (7.7) which can be obtained from (7.11)
does not provide a solution for the original problem (7.3) (indeed, it only solves (7.7)):
for this, we look for solutions ug of (7.3) as perturbations of %, in the form

Ug 1= Ug + . (714)

The perturbation functions ¢ are considered among those vanishing outside €2 and

ow
orthogonal to the space Z = Span(Zy,...,Z,), where Z; = 3 ¢ are solutions of
T
the linearized equation (7.5). This procedure somehow “removes the degeneracy”,
namely we look for the corrector v in a set where the linearized operator is invertible.
This makes it possible, fixed any £ € R", to find 9 = v¢ such that the function wu,,

as defined in (7.14) solves the equation

n
(—A) ug +ug = uf + Y ¢; Z; in Q. (7.15)
i=1
That is, u¢ is solution of the original equation (7.3), up to an error that lies in
the tangent space of the translations (this error is exactly the price that we pay in
order to solve the corrector equation for 1) on the orthogonal of the kernel, where
the operator is nondegenerate). As a matter of fact (see Theorem 7.6 in [30] for
details) one can see that the corrector 1) = 1)¢ is of order €"*25. Therefore, one can
compute I (u¢) = I (g +1¢) as a higher order perturbation of I.(ug). From (7.12),
one obtains that

1
Ie(ug) = I(w) + S He(§) + O™ ), (7.16)
see Theorem 7.17 in [30] for details.

Since this energy expansion now depends only on £ € R™, it is convenient to
define the operator J.: 2. — R as

Je(§) = Ie(uf)-
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This functional is often called the reduced energy functional. From (7.16), we
conclude that

J€) = I(w) + FHAE) + O, (7.17)

The reduced energy J plays an important role in this framework since critical points
of J correspond to true solutions of the original equation (7.3). More precisely (see
Lemma 7.16 in [30]) one has that ¢; =0 for all ¢ = 1,...,n in (7.15) if and only if

aJ,
r () =o. (7.18)

In other words, when e approaches 0, to find concentration points, it is enough to
find critical points of J, which is a finite-dimensional problem. Also, critical points
for J come from critical points of H., up to higher orders, thanks to (7.17). The
issue is thus to prove that H. does possess critical points and that these critical
points survive after the small error of size e”+45:

: in fact, we show that H. possesses
a minimum, which is stable for perturbations. For this, one needs a bound for the
Robin function H, from above and below. To this goal, one builds a barrier function
B¢ defined for £ € Q. and x € R" as

Be(x) := JR”\Q [(z — 6T (x — 2) dz.

Using this function in combination with suitable maximum principles, one obtains
the existence of a constant ¢ € (0,1) such that

CHe(Z‘,f) < ﬁg(x) < C_lHe(x7§)7

for any € R™ and any £ € Q. with dist(&, 9Q,) > 1, see Lemma 2.1 in [30]. From
this it follows that

He(€) ~d ), (7.19)
for all points £ € €2, such that d € [5,0/€]. So, one considers the domain Q. s of the
points of €, that lie at distance more than /e from the boundary of Q.. By (7.19),

we have that
n+4s

He(€) ~ ﬁ for any &€ 0. (7.20)

Also, up to a translation, we may suppose that 0 € Q. Thus, 0 € €. and its distance
from 09 is of order 1/e (independently of ¢). In particular, if ¢ is small enough,
we have that 0 lies in the interior of Qc s, and (7.19) gives that

Hg(o) ~ 6n+4s'

By comparing this with (7.20), we see that 7{. has an interior minimum in Q. s.
The value attained at this minimum is of order €*7*%, and the values attained at the
boundary of €2, 5 are of order §~"~4%¢" ™45 which is much larger than e"™4s if § is
small enough. This says that the interior minimum of H. in (. s is nondegenerate
and it survives to any perturbation of order e®*4%, if § is small enough.

This and (7.17) imply that J has also an interior minimum at some point &
in Q5. By construction, this point & satisfies (7.18), and so this completes the
proof of Theorem 7.1. O

The variational argument in the proof above (see in particular (7.18)) has a
classical and neat geometric interpretation. Namely, the “unperturbed” functional
(i.e. the one with ¢ = 0) has a very degenerate geometry, since it has a whole
manifold of minimizers with the same energy: this manifold corresponds to the
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translation of the ground state w, namely it is of the form My := {we, £ € R"} and,
therefore, it can be identified with R".

VI,

M ]V[E

FIGURE 15. Geometric interpretation

For topological arguments, this degenerate picture may constitute a serious ob-
stacle to the existence of critical points for the “perturbed” functional (i.e. the one
with € # 0). As an obvious example, the reader may think of the function of two
variables f. : R? — R given by f.(z,y) := 22 +ey. When € = 0, this function attains
its minimum along the manifold {z = 0}, but all the critical points on this manifold
are “destroyed” by the perturbation when € # 0 (indeed V fe(z,y) = (2z,¢) never
vanishes).

In the situation described in the proof of Theorem 7.1, this pathology does not
occur, thanks to the nondegeneracy provided in [56]. Indeed, by the nondegeneracy
of the unperturbed critical manifold, when € # 0 one can construct a manifold,
diffeomorphic to the original one (in our case of the form M, := {ug+(€), £ e R"}),
that enjoys the special feature of “almost annihilating” the gradient of the functional,
up to vectors parallel to the original manifold M, (this is the meaning of formula
(7.15)).

Then, if one finds a minimum of the functional constrained to M., the theory of
Lagrange multipliers (at least in finite dimension) would suggest that the gradient
is normal to M.. That is, the gradient of the functional is, simultaneously, parallel
to My and orthogonal to M.. But since M, is diffeomorphically close to My, the
only vector with this property is the null vector, hence this argument provides the
desired critical point.

APPENDIX A. ANOTHER PROOF OF LEMMA 3.3

For completeness, we provide here an alternative proof of Lemma 3.3 that does
not use the theory of the fractional Laplacian.

Alternative proof of Lemma 3.3. We first recall some basic properties of the modi-
fied Bessel functions (see e.g. [3]). First of all (see formula 9.1.10 on page 360 of [3]),
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we have that

28 +© (_1)k22k 28

Js(z) i= — = O(|z***
(2) = 5 AR (s + k+1)  2T(1+s) +O(=7)
as |z| — 0. Therefore (see formula 9.6.3 on page 375 of [3]),
Iy(2) = ngSJS(e%rz)
= —ige _ 6”2(5 2° 2+s )
e 3 (zsm i O(|2#*%)
— z° 2+s
2T +s O

as |z| — 0. Using this and formula 9.6.2 on page 375 of [3],

™

K, (2) = 7(1_5@)—18@))

2sin(ms)

™ 2~ 8
= _ O 2—s )
2sin(ms) (28 T(1—s) 25T(1+s) +O(|z] ))
Thus, recalling Euler’s reflection formula

™

I(1—s)D(s) =

sin(rs)’

and the relation I'(1 + s) = sI'(s), we obtain

I(1-s)T(s) z7*8 z° 9
Ki(2) = 2 (zsr(ls) T2 T(1+9) +O(2] )>
I(s)z=® T(1—s)2° 2—s
= 91—s o Q1+sg + O(‘Z| )’

as |z| — 0. We use this and formula (3.100) in [70] (or page 6 in [74]) and get that,
for any small a > 0,

JJ’OO cos(2mt) Qb = Tota K. (2ra)
o (2 +a2)tz asD(s+3) "
T5te I'(s) TI(1—s)ma® .
= - s Al
a*T (s + %) [27T3a3 2s +0(@™) (A1)
_ Wér(‘s) _ 7T28+% F(l B S) + O(a2—23).

20T (s+3) 25T (s+ 3)

Now we recall the generalized hypergeometric functions ,, F,, (see e.g. page 211
in [74]): as a matter of fact, we just need that for any b, ¢, d > 0,

1Fo(b; ¢, d;0) =

We also recall the Beta function relation

~—

INCIRNC

Bl ) = INa+p

~
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see e.g. formula 6.2.2 in [3]. Therefore using formula (3.101) in [70] (here with y :=

0,v:=0and pu:=s— %, or see page 10 in [71]),
e dt —2 1 1 1
f 1 = - B(78>1F2<;1_87;0>
o (a2 +1t2)°t2 2 2 2 2
_ TETE)
20%T (5 +s)

Then, we recall that T’ (%) = 772, so, making use of (A.1), for any small a > 0,

s+ 1
J*w 1— cos(27rt1) Qb = m25t2 (1 - s) + 02,
o (t2+a2)5t2 2sI’ (s + 5)

Therefore, sending a — 0 by the Dominated Convergence Theorem we obtain

oo 1 _
f L= eosmt) (A.2)

T2 — cos(2mt) T2+ (1 — s)
dt =
t1+2s a—0

0 0o (2+a2)st: 2T (s+1)

Now we recall the integral representation of the Beta function (see e.g. formu-
las 6.2.1 and 6.2.2 in [3]), namely

n—3

p(w)r<;+s)_3<n_1 1+s)_J*°°”dT (A.3)

2
I'(5+s) 2 72 o (Q4+r)zts

We also observe that in any dimension N the (N — 1)-dimensional measure of the

N
Fév,?jl), (see e.g. [61]). Therefore

unit sphere is

N
2

J- dY _ N J+OO pN—l dp
R L R A RN (R R

In particular, taking N := n — 1 and using the change of variable p? =: 7,

‘[ d?’] _ (n_ 1)7T' > J*-‘rOO pn—2 dp
e (L )" T TR ) ()™

(n — 1) TrnT_l +© TnT_s
= n—1 n+t2s dr.
2F(T+1) o (1+71)" =
By comparing this with (A.3), we conclude that
f dny _ (=D T(*F) T (5+5)
Rt (14 [p]2) "5 2T (%3 +1) L (5+5s)
el (% + s)
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Accordingly, with the change of variable 1 := |wi|~! (w2, ..., w,),

1 — cos(2mwr)
J W el dw

1 — cos(2mwy)
:J f - 2 2 9 de? o dwy | dwy
R A\JR 1 (W +ws + - +w2) 2

1 — cos(2mw
= J f ( 1)n+25 d77 duw,
R \JRn—1 |y [1H25(1 + |77|2) 2

T 21F(%+5) J 1 — cos(2mw)
R

= dw
T (% + s) |wy [1F25 1
207 T (L + ) J*OO 1 — cos(27t)
= dt.
T (g + s) o t1+2s
Hence, recalling (A.2),
f 1 — cos(2mwr) 20" T (L4s) n2+iT(1—5s)
——dw = . 5
no Jwlnt2s L(2+5s) 2sT (s + 3)
w2 (1 s)
B sT (% + 8) ’
as desired. g
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